POOR LEGIBILITY ONE OR MORE PAGES IN THIS DOCUMENT ARE DIFFICULT TO READ DUE TO THE QUALITY OF THE ORIGINAL

G:\SCANNING DEPT\Forms etc\Target Sheets\Poor Legibility Target.doc

2166-00838 Soms 88130259

Two borings, both of which were converted to vapor monitoring wells, were drilled/installed to assess conditions surrounding Tank B-1-AA. This tank was not included in the original Work Plan, however, the drilling program was approved by Mr. Al Novak (RWQCB) the field.

BORING/VAPOR MONITORING WELL B-1-AA-B1/MV1

Monitoring Installations - Boring/Vapor Monitoring Well B-1-AA-Bl/MVl was drilled/installed to monitor the north end of the waste oil tank. The location of the boring/vapor monitoring well is indicated on the site map.

<u>Sampling Intervals</u> - Soil samples were taken from the Boring/Vapor Monitoring Well B-l-AA-Bl/MVl at depths of 6, 13, 18, 30 and 40 feet.

Field Observations - The brown color and medium grain size of the sand remained consistent throughout the borehole. There was some construction debris (chunks of asphalt, brick, etc.) in the upper 4 feet and the frequency of the gravel and cobble fraction remained sporadic throughout the boring.

Indications of possible contamination were based upon observations of odor, color, moisture content and soil consistency. There were no indications of contamination.

BORING/VAPOR MONITORING WELL B-1-AA-B2/MV2

Monitoring Installations - Boring/Vapor Monitoring Well B-1-AA-B2/MV2 was drilled/installed to monitor the south end of the waste oil tank as indicated on the site map. Upon completion, the boring was backfilled to a depth of 9 feet at which point a vapor monitoring well was installed.

<u>Sampling Intervals</u> - Soil samples were taken from the boring/vapor monitoring well at depths of 6, 13, 18, 30 and 40 feet, as approved in the Work Plan.

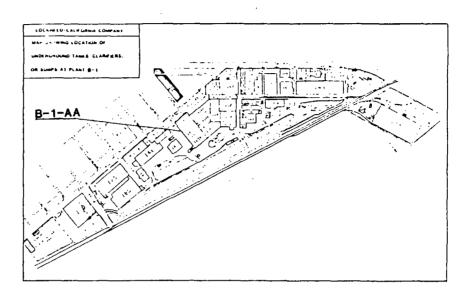
Field Observations - The light variegated brown color and the coarse grain size of the sand remained consistent throughout the first 5 feet of the boring/vapor monitoring well. At 5 feet the soil became a brown, fine to medium grain sand. The sand continued to become progressively finer with depth, although there was a thin coarse layer between 12 and 15 feet. The occurrence of gravel remained frequent throughout the borehole.

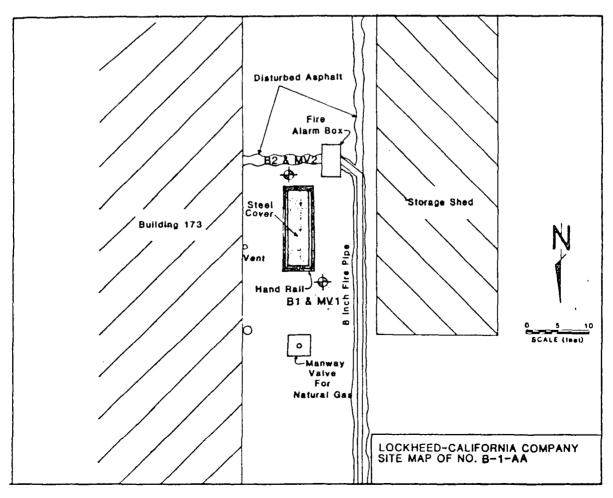
There were no indications of contamination.

LABORATORY PROGRAM AND ANALYSIS

Laboratory Program - Liquid samples of the contents of Tank B-l-AA were collected. Separate analyses of volatile organic compounds and oil and grease were conducted on the oil phase and the water phase of the samples. Soil samples were collected from Borings B-l-AA-Bl and B-l-AA-B2 and analyses of volatile organic compounds were conducted on composites of individual-depth samples from each of these borings. Petroleum hydrocarbons and oil and grease analyses were conducted on individual-depth samples from Boring B-l-AA-Bl. Individual-depth samples collected from Boring B-l-AA-B2 were analyzed for oil and grease only.

<u>Laboratory Analysis</u> - The pertinent laboratory analysis results are summarized in Table B-1-AA. Two samples of the oil phase of liquid sample collected from the tank were analyzed for volatile organics. Concentrations of 4340 and 65.7 tetrachloroethene were detected in the samples. The difference the tetrachloroethene concentrations found in samples is possibly due to volatilization of the samples while separating the oil and water phases. The remaining volatile organic compounds were below the limits of detection in the oil The water phase of the liquid sample from Tank phase samples. B-1-AA was found to contain 6.6 ug/kg of 1,1,1-trichloroethane and 2.8 ug/kg trichloroethene. Both of the liquid samples of the tank contents were found to be composed of approximately 50 percent oil and 50 percent water soluble fluids.


Volatile organic compounds were not detected in either of the composite soil samples from Borings B-1-AA-B1 and B-1-AA-B2. Petroleum hydrocarbons and oil and grease levels in the soil samples from Boring B-1-AA-B1 were found to be below the limits of detection. Low to moderate concentrations of oil and grease (9.2, 22, and 8 mg/kg) were reported for the 13, 18, and 30 foot samples, respectively, collected from Boring B-1-AA-B2.


CONCLUSIONS

Based on field observations (no odor) and laboratory analysis results, it is concluded that Tank B-1-AA is not leaking. The low to moderate concentrations of oil and grease reported for the samples collected from Boring B-1-AA-B2 are more likely the result of surface spills since the high levels of tetrachloroethene found in the liquid samples would have been reflected in the soil samples as well if the tank were leaking.

RECOMMENDATION

Proceed with quarterly monitoring of the wells.

Tank No.	· · · · · · · · · · · · · · · · · · ·	∯-1-há
Tank:		1903 Empire Avenue
	Installation Date	1958
	Capacity, gal.	150v
	Use/Process	Waste oil
	Contents (past,CAS No.,date)	Maste Oil
		1
	(present,CAS No.)	l Waste oil
	this sent form and the	1
	Construction Materials	Steel
	Depth To Top Depth To Invert	1.8 ft 1 1 0.2 ft
	Depth To Invert	1
	Diameter	i 4.4 ft
	Length (1)	1 12.8 ft
	Containment	None
	Corrosive Protection (2)	: UNX
	Status	i In service
fank Piping:	Number	UNK
	Туре	; ;
	Construction Mat.	: Steel
śite:	Paving Material/Iniceness	i Asphalt
	Appearance	Foor
		i
	Surface Contamination	: None
	Rig Type/Requirements (3)	i n. s. nuyer
Program:	Barings (Na.)	2
	Sample Depths	1
		1 82/6,13,18,30,40 ft
		2
	Sample Depths	: HV1/REF. TO 51 HV2/REF. TO 82
	Completion Interval	1 NY1/5-7.2 ft
,		MV2/5-9 ft
Laboratory Fro	ogram (4) No. of Tank Content Samples	: 2
	Parameters	: Hydrocarbons Yol.ûrg.
	No. of Tank Soil Samples	
		Hydrocarbons
		\ .\

1				BLOW	08.80
	CONSTRUCTION DETAILS	DEPTH	LOG	CNTS	LITHOLOGIC DESCRIPTION
	CONSTRUCTION DETAILS	DEPTH - 0 - , - 2 - - 4 - - 6 - - 8 - - 10 - - 12 - - 14 - - 16 - - 18 - - 20 - - 22 - - 24 - - 26 - - 28 - - 30 - - 32 - - 34 - - 36 - - 38 - - 38 - - 38 - - 38 - 38 -	The like is a common of the co	4 0	LITHOLOGIC DESCRIPTION -Asphalt -Debris, asphalt, brick, etc -Sand, fine to coarse grain, brown, moist, w/ occasional cobbles & frequent gravel -Sand, medium grain, brown, w/some gravel
		- 40 -	ð.	50+	-Sand,fine to medium grain,brown
	COMPLETION & BACKFILL				

-Blank 2-in I.D. PVC pipe, 0-5 ft
-Screened 2-in I.D.
PVC pipe, 5-9.2 ft
-Concrete, 0-4 ft

-Bentonite, 4-5 ft -Clean sand, 5-10 ft

-Native material, backfill

10-40 ft

TANK NO. B-1-AA

BORING NO. B-1-AA-B1

				·	0000
CON	STRUCTION DETAILS	DEPTH	LOG	BLOW CNTS	LITHOLOGIC DESCRIPTION
CON	TRUCTION DETAILS	- 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 -		10 50+ 50+	-Asphalt -Sand,coarse grain,light variegated brown,w/ cobbles & pea size gravel -Color change -Sand,fine to medium grain,brown,very moist & loose -Grainsize change to very fine -Color change to lighter brown & more variegated sand more coarse -Color change to dark brown -Sand,very fine grain light brown,
COMPT	ETION & BACKFILL	- 40 -	0	307	-Occasional pebbles
-Blan PVC -Scre PVC -Cond -Bent	-Blank 2-in I.D. PVC pipe, 0-5 ft -Screened 2-in I.D. PVC pipe, 5-9 ft -Concrete, 0-3.5 ft -Bentonite, 3.5-4.5 ft -Clean sand, 4.5-9 ft -Native material, caved		NK NO. RING 1		<u>1-AA</u> - <u>1-AA-</u> B2

		}	B-1-AA DIL (SAMPLE 1) UNTREATED	WATER (SAMPLE 2)	B-1-AA OIL (SAMPLE 2) UNTREATED
 Volatile Organics (ug/kg)	•		•		
Benzene	: <0.2		N.D.	N.D.	N.D.
Ethyl Benzene			N.O.	N.D.	N.D.
	1 (0.1		H.D.	N.D.	N.D.
Chloromethane	1 <0.2		N.D.	N.D.	N.D.
Chloroethane	(0.8		N.D.	N.D.	N.D.
1,1-Dichloroethane	(0.1		N.D.	N.D.	N.D.
1,2-Dichloroethane	1 (0.1		N.D.	N.D.	N.D.
1,2-Dichloropropane	1 (0.1		l N.D.	N.D.	N.D.
1,1,1-Trichlorethane	1 (0.2		: N.D.	6.6	N.D.
1,1,2-Trichloroethane	1 (0.1		N.D.	N.D.	N.D.
Bromodichloromethane	1 <0.1		N.D.	N.D.	N.D.
Dibromochloromethane	1 <0.1		! N.D.	N.D.	N.D.
1,1-Dichloroethene	(0.1		I N.D.	N.D.	N.D.
trans-1,2-Dichloroethene	(0.1		N.D.	N.D.	N.D.
Trichloroethene	1 (0.3	± 2,040	! N.D.	2.8	N.D.
Tetrachloroethene	1 (0.4		4340	N.D.	65.7
Toluene	1 <0.4		l N.D.	N.D.	N.D.
Methyl Ethyl Ketone			i N.D.	N.D.	N.D.
Petroleum Hydrocarbon (mg/kg) Oil & Brease (mg/kg)	(2.0 N.T.	N.A. N.A.	N.T. 50%DIL+50%WATER		N.T. 502DIL+502WATE
CAM Metals (mg/kg)	- -		•	N.T.	N.T.
	1 (2.5		!	****	****
Arsenic	1.13.4		!		
	1 91.9		, !		
	1 (1.0	75	!		
•			, 		
Cobalt	1 6.5	8,000	, !		
Copper	1 22.1	250	!		
Lead	1 (2.5	1,000			
Hercury	1 (0.1	20	{		
Holybdenum	1 6.3	3,500	- (
Nickei	8.4	2,000	- 1 4		
Selenium	1 (2.5	100	- 		
Silver	1 (2.5	500	! !		
Thallium	1 (2.5	700	- -		
Vanadium	1 22.0	2,400	- -		
Zinc	1 38.7	2,500			
Others	- 		 N.T.	N.T.	N.T.
pH (standard units)	8.24	N.A.	!	*****	11 # 1 #
Sodium (mg/kg)	1 403	N.A.	· }		
Cyanide (mg/kg)	1 (0.2	N.A.	· !		
Sulfate (øg/kg)	1 (6	N.A.	•		

N.A. - NOT AVAILABLE

N.D. - NOT DETECTED

N.T. - NOT TESTED

TILE - TOTAL THRESHOLD LIMIT CONCENTRATION

^{*} mg/kg

	BACK- GROUND SAMPLE	į	B-1-AA B1 6 ft.	B1 13 ft.	B1 18 ft.	B1 30 ft.	B-1-AA 81 40 ft.	B-1-AA Bi COMPOSITI
 Volatile Organics (ug/kg)	{ {	N.A.	. n.T.	N.T.			N.T.	N.D.
Benzene	1 (0.2		1 1					
Ethyl Benzene	1 (0.1		ł					
Chloroform	(0.1		,					
Chloromethane	1 (0.2		i I					
Chloroethane	: <0.8		ţ.		•			
1,1-Dichloroethane	(0.1		1					
1,2-Dichloroethane	1 (0.1		¦					
1,2-Dichloropropane	1 (0.1		1					
1,1,1-Trichlorethane	1 (0.2		1					
1,1,2-Trichloroethane	1 (0.1		;					
Bromooichloromethane	(0.1		l .					
Dibromochloromethane	1 <0.1		1					
1,1-Dichloraethene	(0.1		:					
trans-1,2-Dichloroethene	(0.1		1					
Trichloroethene	: <0.3	± 2,040	<u> </u>					
Tetrachloroethene	: <0.4	·	1					
Toluene	1 (0.4		!					
Methyl Ethyl Ketone	1 (0.5		!					
Petroleum Hydrocarbon (meg/kg) Oil & Grease (meg/kg)	: <2.0 : N.T.	N.A. N.A.	1 (2	2 2	(2 (2	<2 <2	〈2 〈2	N.T. N.T.
	·¦		: : N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
Antimsny	1 <2.5	500	!					
Arsenic	13.4	500	!					
Barium	1 91.9	10,000	ł					
Beryllium	1 (1.0	75 [°]	1					
Cadeius	1 (2.5	100	!					
Chromium (Total)	1. 9.6	2,500	1	•				
Cobalt	1 6.5	В,000	ł					
Copper	1 22.1	250	!					
Lead	1 <2.5	1,000	}					
Hercury	1 (0.1	20						, •
Malybdenum	1 6.3	3,500	1					
Nickel	8.4	2,000	1					
Selenium	1 (2.5	100	1					
Silver	1 (2.5	500	i					
Thallium	1 <2.5	700	1					
Vanadium	22.0	2,400	i					
Zinc	: 38.7	2,500						
Others	·, ¦		: ! N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
pH (standard units)	8.24	N.A.	!					
Sodium (mg/kg)	1 403	N.A.	1					
Cyanice (ag/kg)	1 (0.2	N.A.	1					
Sulfate (mg/kg)	1 (6	N.A.	ı					

N.A. - NOT AVAILABLE

N.D. - NOT DETECTED

N.T. - NOT TESTED

TTLC - TOTAL THRESHOLD LIMIT CONCENTRATION

eg/kg

	: BACK- : GROUND : SAMPLE		B-1-AA B2 13 ft.	B-1-AA B2 10 ft.	B-1-AA B2 30 ft.	8-1-AA 82 40 ft.	B-1-AA B2 COMPOSITE
Volatile Organics (ug/kg)	: :	N.A.	: : N.I.	N.T.	N.T.	N.T.	N.D.
Benzene	1 (0.2		! !				
Ethyi Benzene	1 <0.1		!				
Chlorofor s	(0.1		1				
Chloromethane	1 (0.2		:				
Chlorcethane	1 (0.8		!				
1,1-Dichloroethane	(0.1		ļ.				
1,2-Dichloroethane	1 <0.1		ŀ				
1,2-Dichloropropane	1 (0.1		1				
1,1,1-Trichlorethane	1 (0.2		1				
• •	1 (0.1		1				
• •	(0.1		1				
Dibrosochloromethane	1 (0.1		1				
1,1-Dichloroethene	1 (0.1		!				
•	1 (0.1		!				
Trichloroethene	1 (0.3	± 2,040	}				
Tetrachloroethene	1 (0.4	-, .	1				
Toluene	1 <0.4		1				
Methyl Ethyl Ketone	1 (0.5		1				
Petroleum Hydrocarbon (mg/kg) Oil & Grease (mg/kg)	: (2.0 ! N.T.	N.A. N.A.	! N.T. ! 9.2	N.T. 22	N.T. 8	N.T. (2	N.T. N.T.
 CAM Metals (mg/kg)	·		i N.T.	N.T.	N.T.	N.T.	N.T.
Antimony	1 (2.5	500	1				
Arsenic	1 13.4	500	1				
Barie≡	1 91.9	10,000	1				
Beryllium	(1.0	75	1				
£ad#ium	1 (2.5	100	1				
Chromium (Total)	1 9.6	2,500	{	-	•		
Cobalt	6.5	8,000	1				
Capper	22.1	250	;				
Lead	1 (2.5	1,000	ļ				
Hercury	(0.1	20	!				
Molybdenum	1 6.3	3,500	!				
Nickel	1 8.4	2,000	ļ				
Selenium	1 (2.5	100	1				
Silver	1 (2.5	500	l				
Thallium	1 (2.5	700	ł				
Vanadium	1 22.0	2,400	į				
Zinc	38.7	2,500	1				
Others	; ;		: : N.T.	N.T.	N.T.	N.T.	N.T.
pH (standard units)	8.24	N.A.	1				*** * *
·	1 403	N.A.	:				
	. 100	15 a F) a	•				
- ·	: (0.2	N.A.	1				

N.A. - NOT AVAILABLE

N.D. - NOT DETECTED

N.T. - NOT TESTED

TTLC - TOTAL THRESHOLD LIMIT CONCENTRATION

[∎] __ag/kg

0838 ATTACHMENT N

SFUND RECORDS CTR 2166-00838

RESULTS OF UNDERGROUND TANK LEAK DETECTION PROGRAM FOR PLANT B-1

LOCKHEED CALIFORNIA COMPANY
BURBANK, CALIFORNIA

SUBMITTED TO
CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD
LOS ANGELES REGION
APRIL 1988

One boring, which was converted to a suction lysimeter, was drilled/installed to assess conditions surrounding Clarifier B-l-AC.

BORING B-1-AC-B1/SUCTION LYSIMETER B-1-AC-SL1

Monitoring Installations - Boring/Suction Lysimeter B-l-AC-Bl/SLl was drilled/installed slightly east of the approved location due to rig access problems. Both the actual and approved locations of the boring/suction lysimeter are indicated on the site map.

Sampling Intervals — Soil samples from the boring/suction lysimeter were to have been collected at a depth of 12 feet according to the Work Plan. However, in order to more accurately assess subsurface conditions, the samples were collected from depths of 10, 15 and 30 feet. Soil samples were to have been extricated using a 3 inch modified California ring sampler, however, extremely limited access necessitated the use of a smaller rig with a 4-inch solid-stem auger. It was, therefore, not possible to use a downhole sampler, which requires a 8 inch hollow stem auger. The soil samples were taken directly from the auger flights at the surface and are subject to rolatilization. Further, they may represent soil from just below the surface to the listed interval due to soil caving onto the auger flights.

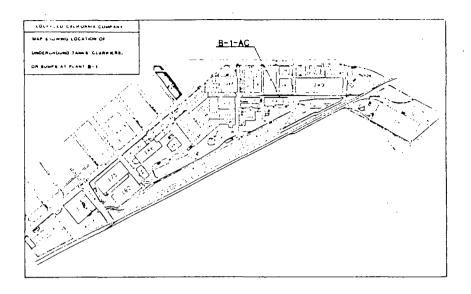
<u>Field Observations</u> - The medium to coarse grain size of the sand remained consistent throughout the boring/suction lysimeter. The soil was brown in color throughout the first 5 feet. At 5 feet the color changed to a darker shade of brown.

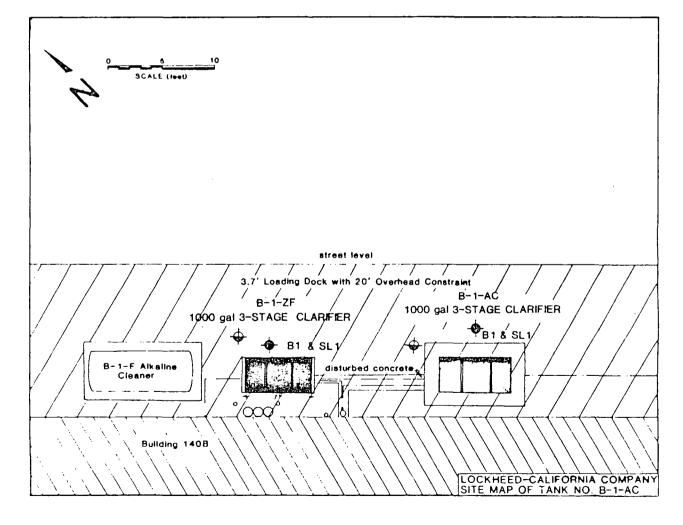
Indications of possible contamination were based upon observations of odor, color, moisture content and consistency of the soils. There were no indications of contamination other than the slight discoloration of soil.

LABORATORY PROGRAM AND ANALYSIS

Laboratory Program - A liquid sample was collected from Clarifier B-1-AC and treated with nitric acid to maintain metals in soluble form for subsequent CAM metals analysis. A second liquid sample was collected and analyzed for volatile organics and pH. Individual soil samples were composited and analyzed for volatile organics, CAM metals, and pH. These analyses have been approved in the Work Plan.

Laboratory Analysis - The pertinent laboratory analysis results are summarized in Table B-1-AC. The treated liquid sample was found to contain 32.0 mg/kg total chromium, 56.0 mg/kg copper, 36.3 mg/kg lead, 5790 mg/kg silver, and 231 mg/kg zinc. The


untreated liquid sample was reported to contain 7.2 ug/kg chloroform, 4.7 ug/kg l,l,l-trichloroethane, l.4 ug/kg trans-l,2-dichloroethene, 2.6 ug/kg trichloroethene, and 5.5 ug/kg tetrachloroethene. The concentrations of volatile organic compounds, CAM metals, and pH reported for the composite soil sample B-l-AC-SLl were below the limits of detection or near the levels found in the background sample.


CONCLUSIONS

Based on field observations and laboratory analyses, it is concluded that Clarifier B-1-AC is not leaking.

RECOMMENDATION

Proceed with quarterly monitoring of the suction lysimeter.

Plain	Tank N		B-1-AC :
Tank: Location			:
Installation Date			
Capacity, gal. 1000 Use/Frocess	lank:	;	
Use/Frocess			
Contents Ipast_CAS No., date Concrete			
Construction Materials Concrete		Use/Frocess	Clarifier (3-stage)
Construction Materials Concrete		Contents (past,CAS No.,date)	UNK
Depth To Top		(present,CA3 Mo.)	UNT
Depth To Top		Construction Materials	Concrete
Depth To Invert 4 ft			Rectangular
Diameter 3.3 ft		Depth To Top	UNK
Dispeter 3.3 ft		Depth To Invert ,	4 ft
Containment			3.3 ft
Containment		length (1)	
Corrosive Protection (2)			
Status			
Tank Piping: Number			, '
Type	·	******	'
UNA	Tank Piping:	Number	•
Construction Mat. Staei		Түре	•
DNK Surface Contamination		Construction Mat.	
Drilling Rig Type/Requirements (3) S.S. Auger	Site:		
Drilling Rig Type/Requirements (3) S.S.Auger			
Program:		Surface Contamination	UNF
Sample Depths B1/10,15,30 Jar			
Sample Depths StiffEF, TO B1 Completion Interval StiffEt Laboratory Program (4) No. of Tank Content Samples CAM, pH Voi.Org. No. of Tank Soil Samples 14(Comp.) Parameters CAM, pH Vol.Org.	rrogram:	Borings (No.)	1
Sample Depths StiffEF, TO B1 Completion Interval StiffEt Laboratory Program (4) No. of Tank Content Samples CAM, pH Voi.Org. No. of Tank Soil Samples 14(Comp.) Parameters CAM, pH Vol.Org.		Sample Depths	:
Completion Interval SLI/AEF, TO 81 Completion Interval SLI/AFE Laboratory Program (4) No. of Tank Content Samples : CAM,pH Vol.Org. Parameters : CAM,pH Parameters : CAM,pH Vol.Org.		Vapor hells/Lysimeters (No.)	
Laboratory Program (4) No. of Tank Content Samples 3 Parameters CAM.pH Voi.Org. Mo. of Tank Soil Samples 1(Comp.) Parameters CAM.pH Vol.Org.		Sample Depths	: SL!/REF, TO 81
Farameters CAM.pH Vol.Org. Mo. of Tank Soil Samples L(Comp.) Parameters CAM.pd Vol.Org.			:
Farameters CAM.pH Vol.Org. Mo. of Tank Soil Samples L(Comp.) Parameters CAM.pd Vol.Org.	Laboratory Pro	Mu. or lank content samples	
Parameters : CAM,pH : Voi.Org.		Parageters	! FAR NH
Parameters : CAM,pH : Voi.Org.		No. of Tank Soil Samples	1 (Comp.)
		Parameters	: EAM,pH : Vol.Org.

CONSTRUCTION DETAILS	DEPTH	LOG	BLOW CNTS	LITHOLOGIC DESCRIPTION
	- 0 - - 2 - - 4 - - 6 - - 8 - - 10 - - 12 - - 14 - - 16 - - 18 - - 20 - - 22 - - 24 - - 26 - - 28 - - 30 - - 32 - - 34 - - 36 - - 38 - - 40 -	(347/44) (347/44)	Jar Jar	-Concrete, loading dock -Artificial fill: Sand, medium to coarse grain, brown, w/some gravel -Native material: Sand, medium to coarse grain, medium brown -Gravel layer, 16 to 18 ft
COMPLETION & BACKFILL				

-Suction Lysimeter at 9 ft

-Blank 2-in I.D.

PVC pipe, 0-5 ft -Concrete, 0-4 ft

-Bentonite, 4-5 ft

-Clean sand, 5-6 ft

-Clean sand & native

mix, 6-10 ft

-Native material, caved 10-30 ft

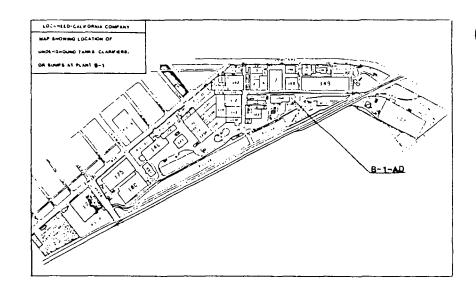
TANK NO. B-1-AC

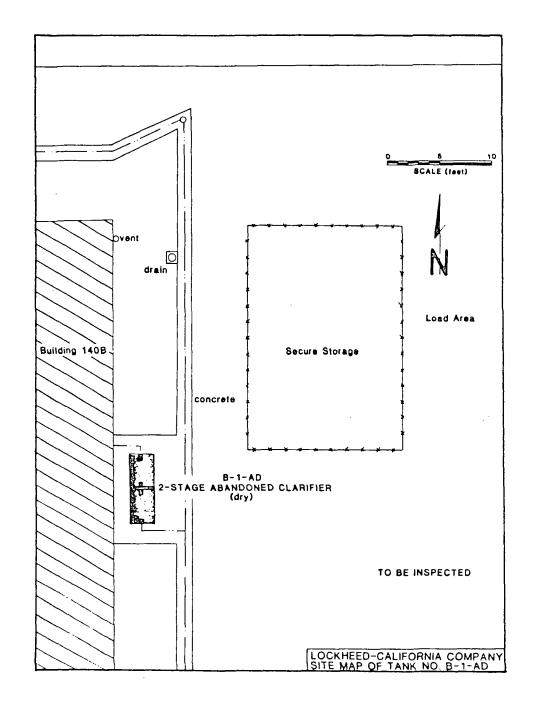
BORING NO. B-1-AC-B1

PARAMETER	I BACK- I GROUND I SAMPLE		: FIGUID		B-1-AC LIQUID (DUP.) UNTREATED	B-1-AC SL1 COMPOSITE
 Volatile Organics (ug/kg)		N.A.	 ! N.T.			N.D.
Benzene	1 (0.2		1	N.B.	N.D.	
Ethyl Benzene	1 (0.1		1	N.D.	N.D.	
Chloroform	1 (0.1		1 1	7.2	7.1	
Chloromethane	1 (0.2		1	N.D.	N.D.	
Chioroethane	1 (0.8		i i	N.D.	N.D.	
1,1-Dichloroetname	1 (0.1		t L	N.D.	N.D.	
1,2-Dichloroethane	1 <0.1		1	N.D.	N.D.	
1,2-Dichloropropane	1 (0.1		1	N.D.	N.D.	
1,1,1-Trichlorethane	1 (0.2		! !	4.7	1.0	
1,1,2-Trichloroetname	<0.1		1	N.D.	N.D.	
Bromodichloromethane	(0.1		ŀ	N.D.	N.D.	
Dibromochloromethane	1 (0.1		1	N.D.	N. D.	
	(0.1		{	N.D.	N.S.	
trans-1,2-Dichloroethene	1 (0.1		!	1.4	0.4	
Trichloroethene	1 (0.3	± 2,040	!	2.6	1.8	
Tetrachloroethene	1 <0.4	•	ŀ	5.5	2.9	
Toluene	1 (0.4		:	N.D.		
Methyl Ethyl ketone	1 <0.5		!	N.D.		
Petroleum Hydrocarbon (mg/kg) Oil & Grease (mg/kg)	•	N.A.	! N.T. ! N.T.			N.T. N.T.
CAM Metals (mg/kg)	·		; ;	N.T.	 N.Т.	
Anti≊ony	1 (2.5	500	0.31			⟨2.5
Arsenic	1 13.4	5ù0	1 4.36			9.1
Bariua	1 91.9	10,000	18.1			57.1
Bervilium	1 (1.0		(Ú.1			1.0
Caskium	1 (2.5	100	2.54			0.9
Chromium (Total)	1 9.6	2,500	1 32.0	**		15.5
Conalt	1 6.5	•	3.9			3.9
Copper	1 22.1	250	1 56			8.3
Lead	1 (2.5	1,000	: 36.3			4.92
Mercury	(0.1		0.002			⟨0.1
Molybdenum		3,500				9.1
Nickel		•	2.5			6.3
Selenium		-	(û.25			₹2.5
Silver	1 (2.5		1 5790			(2.5
Thallium	1 (2.5	70ú	(0.5			₹2.5
Vanadiu s	1 22.0	2,400	1.2			15.9
Zinc	1 38.7		1 231			39.0
Otners	¦		: : N.T.		N.T.	
pH (standard units)	8.24	N.A.	ŧ	E.35		8.91
•	N.T.	N.A.	1	N.T.		N.T.
	1 (0.2	N.A.	1	N.T.		N.T.
	I N.T.	N.A.	!	N.T.		N.T.

N.A. - NOT AVAILABLE

N.D. - NOT DETECTED


N.T. - NOT TESTED


TILE - TOTAL THRESHOLD LIMIT CONCENTRATION

^{∗ ∎}g/kg

TANK B-1-AD

Tank B-1-AD is a dry, abandoned, two-stage clarifier and will be inspected, as approved in the Work Plan. The results of that inspection will be added to this report upon completion.

Tank: Location 1705 Victory Place Installation Date UMK Capacity, gal. UMK Use/Process Claritier 12-stage) Contents (past,CAS No., date): UMX (present,CAS No.) None Construction Materials Concrete	Tank: Location 1705 Victory PI Installation Date UMK Capacity, gal. UMK Use/Process Clarifier (2-state) Contents (past,CAS Mo.,date) UMX (present,CAS Mo.) Mone Construction Materials Concrete	lace
Installation Date	Tank: Location 1705 Victory Pl Installation Date UMK Capacity, gal. UMK Use/Process Clarifier 12-sta Contents (past,CAS Mo., date): UMX (present,CAS Mo.) Mone Construction Materials Concrete	lace
Installation Date Capacity, gal. Use/Process Clarifier (2-stage) Contents (past_CAS No., date) UNA (present_CAS No.) Abone Construction Materials Concrete Geometry Mectangular Depth To Invert UNK Diameter 2.3 ft Length (1) 6.5 ft Containment Mone Corrosive Protection (2) UNK Status Inactive Tank Piping: Mumber UNK Type UNK Construction Mat. Steel Sites Pasing Material/Thickness Concrete Appearance UNK Surface Contamination UNK Defiling Rig Type/Requirements (3) Inspection Program: Borings (No.) 0 Sample Depths Completion Interval Laboratory Program (4) No. of Tank Soul Samples 0	Installation Date UNK Capacity, gal. UNK Use/Process Clarifier 12-sta Contents (past,CAS No.,date): UNX (present,CAS No.) None Construction Materials Concrete	
Contents (past,CAS No., fate) Construction Naterials Construction Naterials Concrete Security Rectangular Depth To Invert UNK Disacter 2.3 ft Length (1) 6.5 ft Containment None Corrosive Protection (2) UNK Status Inactive Tank Piping: Number UNK Type UNK Construction Nat. Steel Site: Paving Naterial/Thickness Concrete Appearance UNK Surface Containments (3) Inspection Prograe: Dorings (No.) Sample Depths Completion Interval	Use/Process Clarifier (2-sta Contents (past,CAS Mo.,date) UNX (present,CAS Mo.) None Construction Materials Concrete	
Contents (pasi,CAS No., date) Construction Naterials Construction Naterials Concrete Security Rectangular Pepth To Top UNK Depth To Invert Length (1) Containment Mone Corrosive Protection (2) UNK Status Inactive Tank Piping: Number UNK Type UNK Construction Nat. Steel Site: Paring Naterial/Thickness Concrete Appearance UNK Surface Containation UNK Surface Containation UNK Surface Containation UNK Construction Nat. Surface Containation UNK Concrete Appearance UNK Surface Containation UNK Dealthic Iteratory One Concrete Appearance UNK One Concrete Appearance UNK Surface Containation UNK Dealthic Iteratory One Containation UNK One Concrete Appearance UNK One Con	Contents (past,CAS Mo.,date) UNX (present,CAS Mo.) Mone Construction Materials Concrete	
Construction Materials Concrete Construction Materials Concrete Construction Materials Concrete Construction Materials Concrete Construction Material UMK Diameter 2.3 ft Length (1) 6.5 ft Containment Mone Corrosive Protection (2) UMK Status Inactive Tank Piping: Mumber UMK Type UMK Construction Mat. Steel Site: Paving Material/Thickness Concrete Appearance UMK Surface Contamination UMK Drilling Rig Type/Requirements (3) Inspection Program: Borings (Mo.) 0 Sample Depths Vapor Wells/Lysimeters (ho.) 0 Sample Depths Completion Interval Laboratory Program (4) No. of Tank Content Samples 0 Parameters Mo. of Tank Soil Samples 0	(present,CAS Mo.) : Mone Construction Materials : Concrete	
Construction Materials Concrete Security Rectangular Depth To Top UMK Depth To Invert UMK Disaeter 2.3 ft Length (1) 6.5 ft Containment Mone Corrosive Protection (2) UMK Status Inactive Tank Piping: Mumber UMK Type UMK Construction Mat. Steel Site: Paving Material/Thickness Concrete Appearance UMK Surface Contamination UMK Surface Contamination UMK Surface Contamination UMK Construction Mat. Steel Site: Paving Material/Thickness Concrete Appearance UMK Surface Contamination UMK Concrete UMK Surface Contamination UMK Consider Depths Completion Interval Laboratory Program (4) Mo. of Tank Content Samples 0 Parameters No. of Tank Soil Samples 0	Construction Materials Concrete	
Construction Naterials Concrete		
Security Rectangular		·
Depth To Top UMK Depth To Invert UMK Diameter 2.3 ft Length (1) 6.5 ft Containment Mone Corrosive Protection (2) UMK Status Inactive Tank Piping: Humber UMK Type UMK Construction Nat. Steel Site: Paving Material/Thickness Concrete Appearance UMK Surface Contamination UMK Drilling Rig Type/Requirements (3) Inspection Program: Borings (Mo.) 0 Sample Depths Vapor Wells/Lysimeters (ho.) 0 Sample Depths Completion Interval Laboratory Program (4) No. of Tank Content Samples 0 Parameters No. of Tank Soil Samples 0	Departry 1 Rectaligutar	-
Depth To Invert Diameter Diameter Length (1) Containment Corrosive Protection (2) UNK Status Inactive Tank Piping: Humber UNK Type UNK Construction Nat. Steel Site: Paring Material/Thickness Concrete Appearance UNK Surface Contamination UNK Drilling Rig Type/Requirements (3) Sample Depths Vapor Wells/Lysimeters (Ao.) Sample Depths Completion Interval Laboratory Program (4) Mo. of Tank Content Samples O Parameters No. of Tank Soil Samples O	B 444 To Too	
Depth To Invert Diameter Length (1) Length (1) Containment Corrosive Protection (2) UNK Status Inactive Tank Piping: Humber UNK Type UNK Construction Nat. Steel Site: Paving Material/Thickness Concrete Appearance UNK Surface Contamination UNK Drilling Rig Type/Requirements (3) Sample Depths Vapor Wells/Lysimeters (No.) Sample Depths Completion Interval Completion Interval Laboratory Program (4) No. of Tank Content Samples O Parameters No. of Tank Soil Samples O	Depth To Top : UNK	-
Diameter 2.3 ft Length (1) 6.5 ft Containment None Corrosive Protection (2) UMK Status Inactive Tank Piping: Mumber UMK Type UMK Construction Nat. Steel Site: Paving Material/Thickness Concrete Appearance UMK Surface Contamination UMK Drilling Rig Type/Requirements (3) Inspection Program: Borings (No.) 0 Sample Depths Completion Interval Completion Interval Laboratory Program (4) No. of Tank Content Samples 0 Parameters No. of Tank Soil Samples 0	Depth To Invert : UNK	
Containment None Corrosive Protection (2) UNK Status Inactive Tank Piping: Mumber UNK Type UNK Construction Nat. Steel Site: Paving Material/Thickness Concrete Appearance UNK Surface Contamination UNK Drilling Rig Type/Requirements (3) Inspection Program: Borings (No.) 0 Sample Depths Vapor Wells/Lysimeters (No.) 0 Sample Depths Completion Interval Laboratory Program (4) Mo. of Tank Content Samples 0 Parameters No. of Tank Soil Samples 0	Diameter 2.3 ft	
Corrosive Protection (2) UNK Status Inactive Tank Piping: Mumber UNK Type UNK Construction Nat. Steel Site: Paving Material/Thickness Concrete Appearance UNK Surface Contamination UNK Drilling Rig Type/Requirements (3) Inspection Program: Borings (No.) 0 Sample Depths Vapor Wells/Lysimeters (No.) 0 Sample Depths Completion Interval Laboratory Program (4) Mo. of Tank Content Samples 0 Parameters No. of Tank Soil Samples 0	Length (1) : 6.5 ft	
Corrosive Protection (2) UNK Status Inactive Tank Piping: Musber UNK Type UNK Construction Mat. Steel Site: Paving Material/Thickness Concrete Appearance UNK Surface Contamination UNK Drilling Rig Type/Requirements (3) Inspection Program: Borings (No.) 0 Sample Depths Vapor Wells/Lysimeters (No.) 0 Sample Depths Completion Interval Laboratory Program (4) No. of Tank Content Samples 0 Parameters No. of Tank Soil Samples 0	Lontainment . Home	
Tank Piping: Musber UMK Type UMK Construction Nat. Steel Site: Paving Material/Thickness Concrete Appearance UMK Surface Contamination UMK Drilling Rig Type/Requirements (3) Inspection Program: Borings (No.) 0 Sample Depths Vapor Wells/Lysimeters (No.) 0 Sample Depths Completion Interval Laboratory Program (4) Mo. of Tank Content Samples 0 Parameters No. of Tank Soil Samples 0	Corrosive Protection (2) UNK	
Type Type UMK Construction Nat. Steel Site: Paving Material/Thickness Concrete Appearance UMK Surface Contamination UMK Drilling Rig Type/Requirements (3) Inspection Program: Borings (No.) Sample Depths Vapor Wells/Lysimeters (No.) Completion Interval Laboratory Program (4) No. of Tank Content Samples O Parameters No. of Tank Soil Samples O	Status : inactive	
Type Construction Mat. Steel Site: Paving Material/Thickness Concrete Appearance UMK Surface Contamination UMK Drilling Rig Type/Requirements (3) Inspection Program: Borings (No.) 0 Sample Depths Vapor Wells/Lysimeters (No.): 0 Sample Depths Completion Interval Laboratory Program (4) No. of Tant Content Samples 0 Parameters No. of Tant Soil Samples 0	Tank Piping: Musber UNK	
Construction Mat. Site: Paving Material/Thickness Concrete Appearance UMK Surface Contamination UMK Drilling Rig Type/Requirements (3) Inspection Program: Borings (No.) Sample Depths Vapor Wells/Lysimeters (No.) Sample Depths Completion Interval Laboratory Program (4) Mo. of Tank Content Samples Parameters No. of Tank Soil Samples 0	Type :	
Site: Paving Material/Thickness Concrete Appearance UMK Surface Contamination UMK Drilling Rig Type/Requirements (3) Inspection Program: Borings (Mo.) 0 Sample Depths Vapor Wells/Lysimeters (ho.): 0 Sample Depths Completion Interval: Laboratory Program (4) Mo. of Tank Content Samples 0 Parameters No. of Tank Soil Samples 0		
Appearance UMK Surface Contamination UMK Drilling Rig Type/Requirements (3) Inspection Program: Borings (No.) 0 Sample Depths Vapor Wells/Lysimeters (No.) 0 Sample Depths Completion Interval Laboratory Program (4) No. of Tank Content Samples 0 Parameters No. of Tank Soil Samples 0	Site: Paving Material/Thickness Concrete	
Drilling Rig Type/Requirements (3) Inspection Program: Borings (No.) 0 Sample Depths Vapor Wells/Lysimeters (No.) 0 Sample Depths Completion Interval: Laboratory Program (4) No. of Tank Content Samples 0 Parameters No. of Tank Soil Samples 0	!	
Drilling Rig Type/Requirements (3) Inspection Program: Borings (No.)	1	
Sample Depths Vapor Wells/Lyssmeters (No.): 0 Sample Depths Completion Interval: Laboratory Program (4) Mo. of Tank Content Samples Parameters No. of Tank Soil Samples 0	Drilling Rig Type/Requirements (3) : Inspection	
Vapor Wells/Lysimeters (No.): Sample Depths Completion Interval: Laboratory Program (4) Mo. of Tant Content Samples No. of Tant Soil Samples 0	BOTINGS (NO.) i U	
Completion Interval Laboratory Program (4) Mo. of Tant Content Samples 0 Parameters No. of Tant Soil Samples 0	Sample Depths :	
Completion Interval Laboratory Program (4) Mo. of Tant Content Samples 0 Parameters No. of Tant Soil Samples 0	Vapor Wells/Lystaeters (No.): 0	
Laboratory Program (4) No. of Tank Content Samples Parameters No. of Tank Soil Samples 0		
No. of Tank Content Samples 0 Parameters No. of Tank Soil Samples 0	Loapletton Interval:	
Parameters Mo. of Tans Soil Samples 0	Laboratory Program (4)	
Parameters Mo. of Tank Soil Samples 0		
	Parameters :	

Two borings, which were converted to vapor monitoring wells, were drilled/installed to assess conditions surrounding Tank B-l-AE.

BORING/VAPOR MONITORING WELL B-1-AE-B1/MV1

Monitoring Installations - Boring/Vapor Monitoring Well B-1-AE-Bl/MVl was drilled/installed to monitor the waste oil tank slightly east of the approved location due to re-assessment of tank location. Both the actual and approved locations of the boring/vapor monitoring well are indicated on the site map.

Sampling Intervals - Soil samples from the boring/vapor monitoring Well were to have been collected at depths of 7, 17, 22, 30 and 40 feet according to the Work Plan. However, in order to expedite the sampling process, samples were extracted from depths of 5, 17, 23, 30 and 40 feet. Based on the absence of any layers of low permeability in the upper portions of the soil horizons, and the loose, highly conductive nature of the sands that predominate the lithology, it is unlikely that a slight variance in the sampled intervals will significantly alter the chemical profile of the soil.

Field Observations - The brown color and medium to fine coarse grain size of the sand remained consistent throughout the first 5 feet of the boring. At 5 feet the sand became lighter in color and coarser. At 10 feet the sand became finer grained and was a darker brown. The occurrence of cobbles and gravel remained frequent throughout the excavation.

Indications of possible contamination were based upon observations of odor, color, moisture content, and soil consistency. There were no indications of contamination.

BORING/VAPOR MONITORING WELL B-1-AE-B2/MV2

Monitoring Installations - Boring/Vapor Monitoring Well B-1-AE-B2/MV2 was drilled/installed west of the approved location due to re-assessment of tank location. Both the actual and approved locations of the boring/vapor monitoring well are indicated on the site map.

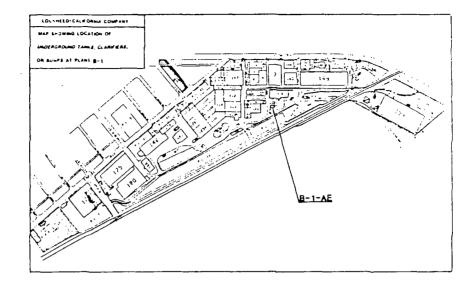
Sampling Intervals - Soil samples from the boring/vapor monitoring well were to have been collected with a ring sampler at depths of 7, 17, 22, 30 and 40 feet according to the Work Plan. However, due to failure of the sampling cable at 30 feet, it was necessary to take the 30 foot and 40 foot samples directly from the auger cutting. The auger cut samples are subject to volatilization. However, as the tank contains waste oil, the possible volatilization of the lighter organic fractions from the auger cut samples should not significantly alter the results.

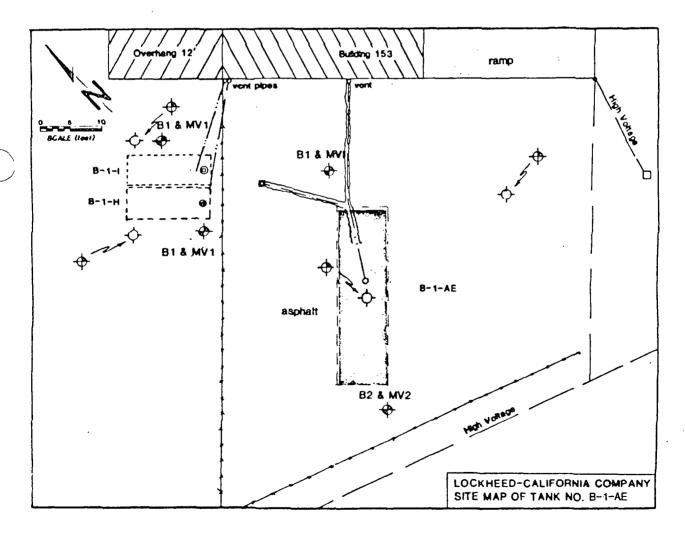
<u>Field Observations</u> - The brown color and medium grain size of the sand remained consistent throughout the boring/vapor monitoring well. The frequency of gravels increased at 25 feet and continued to 35 feet.

There were no indications of contamination.

LABORATORY PROGRAM AND ANALYSIS

Laboratory Program - A liquid sample was collected from Tank B-l-AE and analyzed for oil and grease. Individual-depth soil samples were collected from Borings B-l-AE-Bl and B-l-AE-B2 and analyzed for oil and grease. Composites of individual-depth soil samples from each boring were analyzed for volatile organic compounds. These analyses have been approved in the work plan.


Laboratory Analysis - The pertinent laboratory analysis results are summarized in Table B-1-AE. The liquid sample was found to contain 2330 mg/kg of oil and grease. The concentrations of oil and grease reported for individual soil samples from B-1-AE-Bl are near the levels reported for the background samples (with the exception of the 17 foot sample where a slightly higher concentration was found). Low to moderate oil and grease concentrations were reported for individual soil samples from B-1-AE-B2 (ranging from 7.1 to 39.8 mg/kg). It should be noted that the 30-foot and the 40-foot samples from Boring B-1-AE-B2 are grab samples of auger cuttings. Typically, such samples can be contaminated and are not thought to be reliable. The levels of volatile organic compounds for each of the composite samples (B-1-AE-B1 and B-1-AE-B2) were reported to be below the limits of detection.


CONCLUSIONS

Based on laboratory analysis results, it is concluded that the soil around Clarifier B-1-AE (specifically at Boring B-1-AE-B2) is contaminated with a low to moderate level of oil and grease. It is possible that this contamination is due to clarifier leakage, however additional sources for the contamination include clarifier overflow and surface spills.

RECOMMENDATIONS

Proceed with quarterly monitoring of vapor monitoring wells.

Tank No.		ű-1-A£ :
Plant No./Neare	est Bldg.	B-1/B1dg. 153 (SW Corner)
Tank:	Location	1705 Victory Place
	Installation Gate	UNK
	Capacity, gal.	UNK
	Use/Process	UNA
	Contents (past,CAS No.,date)	UHA
	(present,CAS No.;	Water soluble waste oil :
	the extreme many	
	Construction Materials	Steei ;
	Securetry	Cylindrical
	Depth To Top	2.9 ft
	Depth To Invert	12.3 ft
	Diameter	8.5 ft
	Length (1)	UNK :
	Containment	
	Corrosive Protection (2)	L UNK ;
	Status	!; ;
Tank Piping:	huaber	1! UNK :
	Туре	!
		1 UNK :
	Construction Mat.	: Steei :
51 te:	Paving Material/Inickness	: Aspnalt :
	Appearance	Poor :
	Surface Contamination	ûlî on ground surface :
Grilling Program:	Rig Type/Requirements (3)	
11 og: 22.	-	l
		: B1/5,17,23,30,40 ft B2/5,17,23;6rab 30,40 ft
	Vapor Wells/Lystaeters (No.)	2
	Sample Depths	! MV1/REF. TO B! : ! MV2/REF. TO B2 : !
	Completion Interval	MV1/o-14 ft MV2/6-14.1 ft
Laboratory Pro	ngram (4) Mo. of Tank Content Samples	1
	Parameters	i hydrocarbons i
	No, of Tank Soil Samples	6 & 2(Comp.)
		i hydrocarbons : Vol. Ürg.
		' '

CONSTRUCTION DETAILS	DEPTH	LOG	BLOW	LITHOLOGIC DESCRIPTION	
001101110011011			UNIS		
व्यवस्थिति है अरब	- 0 -	いくことべい		Asphalt Sand,fine to medium	
	- 2 -			grain, brown, very loose, slightly moist, frequent	
	- 4 -		10	pebbles	
	- 6 -		10	-At 5 ft becomes more coarse & lighter in color	
	- 8 -			varieagted	
in in its control in the interest of the inter	- 10 -			-Color change,brown w/more	
ប្រទ	- 12 -		•	fine grain sand,	
in the second se	- 14 -			-Sand, very fine grain,	
	- 16 -			brown,loose	
0.	- 18 -		50+		
SÓ	- 20 -			-Sand,fine to medium	
	- 22 -	e e		grain,brown,occasional pebbles	
	- 24 -	• 6	50+		
	- 26 -	0			
G a	- 28 -	•			
9	- 30 -	0	50+	-Cobbles to 6-in diameter	
	- 32 -	. 0			
Ď	- 34 -	0 0	ŀ		
	- 36 -	• 0			
	- 38 -	0			
	- 40 -	0.	50+		
COMPLETION & BACKFILL					
-Blank 2-in I.D. PVC pipe, 0-6 ft					
-Screened 2-in I.D. PVC pipe, 6-14 ft			-	4 AF	
-Concrete, 0-4 ft	TANK NO. B-1-AE				
-Bentonite, 4-5 ft -Clean sand, 5-14 ft	BORING NO.B-1-AE-B1				
-Native material, caved				GREGG & ASSOCIATES INC.	

CONSTRUCTION DETAILS	DEPTH	LOG	BLOW CNTS	LITHOLOGIC DESCRIPTION
COMPLETION & BACKFILL	- 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 -		39 50+ Grab	-Asphalt -Sand, fine grain, brown, loose, moist, slightly cohesive, occasional pebbles & cobbles to 4-in diameter -Increase in gravel
-Blank 2-in I.D. PVC pipe, 0-6 ft -Screened 2-in I.D. PVC pipe, 6-14.1 ft -Concrete, 0-4 ft	TAI	NK NO	. <u>B-</u>	1-AE_
-Bentonite, 4-5 ft -Clean sand, 5-14 ft -Native material, caved 14-40 ft	ВО	RING 1	10. <u>B</u> -	-1-AE-B2

	BACK- GROUND SAMPLE		B-1-AE LIQUID UNTREATED	B-1-AE B1 17 ft.	B-1-AE B1 23 ft.	B-1-AE B1 30 ft.	A-1-AE B1 40 ft.	B-1-AE B1 COMPOSITE
	 	N.A.	: : N.T.	N.T.	N.T.	N.T.	N.T.	N.D.
	1 <0.2		{					
Ethyl Benzene	1 (0.1						•	
Ehlorofor a	1 (0.1		l I					
Chloromethane	(0.2							
Chloroethane	1 <0.8		1 1					
1,1-Dichloroethane	1 (0.1		1 1					
1,2-Dichloroethane	1 <0.1		! !					
•	1 (0.1							
	<0.2		! i					
• •	1 (0.1		! !					
• •	1 ⟨0.1		! !					
Dibromochloromethane	1 (0.1		ı 1					
	(0.1		1 k					
•	(0.1		<u> </u>					
•	1 (0.3	¥ 2,040	1					
	1 (0.4	-1	1 1					
	1 (0.4		! #					
Methyl Ethyl Ketone	(0.5							
Petroleum Hydrocarbon (mg/kg) Oil & Grease (mg/kg)	l N.T.	N.A. N.A.	N.T. 2330	N.T. 4	N.T. 2	N.T. ∢2	N.T. (2	N.T. N.T.
 CAM Metals (mg/kg)	¦ ¦	·	¦ } N.T.	N.T.	N.T.	N. T.	 N.Т.	N.T.
	(2.5	500	I					
•	1 13.4	500						
		10,000	1 1					
	1 (1.0	75	r F					
•	1 (2.5	100	! }					
Chromium (Total)	1 9.6	2,500	:	•				
Cobalt	1 6.5	8,000	 					
Copper	22.1	250						
Lead	1 (2.5	1,000) 					
Mercury	1 (0.1	20	!					
Holybdenua	1 6.3	3,500	 					• •
Nickel	8.4	2,000	1				6	
Seienium	1 (2.5	100	! !				·	
Silver	1 ⟨2.5	500	t 1					
Thallium	1 (2.5	70ú	1					
Vanadiu a	1 22.0	2,400	l i					
Zinc	38.7	2,500	!					
 Others		**********	: : N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
pH (standard units)	8.24	N.A.	;					
•	1 N.T.	N.A.	1					
	1 (0.2	N.A.] }					
, , , , , , , , , , , , , , , , , , , ,								

N.A. - NOT AVAILABLE N.D. - NOT DETECTED

N.T. - NOT TESTED

TTLC - TOTAL THRESHOLD LIMIT CONCENTRATION

[∎]g/kg

	I BACK- I GROUND I SAMPLE		B-I-AE B2 17 ft.	B-1-AE B2 23 ft.	B-1-AE B2 30 ft.	B-1-AE B2 40 ft.	B-1-AE B2 COMPOSITE
Volatile Organics (ug/kg)	}	N.A.	N.T.	N.T.	N.T.	N.T.	N.D.
Benzene	(0.2		}				
Ethyl Benzene	1 (0.1		i				
Chlorofora	1 (0.1		t 1				
Chloromethane	1 <0.2		:				
Chlorcethane	1 (0.8		i i				
1,1-Dichloroethane	1 (0.1		!				
•	: (0.1		!				
1,2-Dichloropropane	1 (0.1		<u>;</u>				
•	(0.2		}				
. ,	(0.1		:				
• •	(0.1		i 1				
Dibromochloromethane	1 <0.1		ł.				
	1 (0.1		t L				
•	1 (0.1		!				
	1 (0.3	± 2,040	!				
	1 (0.4	-,					
	1 (0.4		!				
Methyl Ethyl Ketone	1 <0.5						
Petroleum Hydrocarbon (mg/kg) Oil & Grease (mg/kg)	! <2.0 ! N.T.	N.A. N.A.	N.T.	N.T. 7.1	N.T. 36.4	N.T. 39.8	N.T. N.T.
 CAM Metals (mg/kg)	: 		: : N.T.	N. T.	N.T.	N.T.	N.T.
	1 (2.5	500	!				
Arsenic	1 13.4	500	!				
	1 91.9	10,000	į.				
Beryllium	(1.0	75	:				
Cadeius	1 (2.5	100	1				
	1 9.6	2,500	7	•			
Cosalt	1 6.5	8,000	!				
Copper	22.1	250	!				
Lead	1 (2.5	1,000	{				
Hercury,	(0.1	20	}				
Holyodenum	: 6.3	3,500	!				
hickel	1 8.4	2,000	- !				
	1 (2.5	100	!				
	1 (2.5	500	!				
	1 (2.5	700	!				
	1 22.0		!				
	38.7	2,500	;				
 Ithers	:		: : N.T.	N.T.	N.T.	N.T.	N.T.
	8.24	N.A.	!	.,			
-	N.T.	N.A.	!				
- ·	(0.2	N.A.	· !				
	1 N.T.		•				

N.A. - NOT AVAILABLE

N.D. - NOT DETECTED

N.T. - NOT TESTED

TILE - TOTAL THRESHOLD LIMIT CONCENTRATION

^{⊧ ∎}g/kg

One boring, which was converted to a suction lysimeter, was drilled/installed to assess conditions surrounding Clarifier B-1-AH.

BORING B-1-AH-B1/SUCTION LYSIMETER B-1-AH-SL1

Monitoring Installations - Boring/Suction Lysimeter B-1-AH-B1/SL1 was drilled/installed to monitor the clarifier as indicated in the approved Work Plan. The location of the boring/suction lysimeter is indicated on the site map.

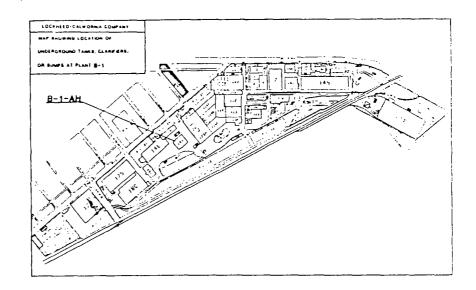
Sampling Intervals - Soil samples from the boring/suction lysimeter were to have been collected at depths of 5, 12, 17, 25 and 40 feet according to the Work Plan. However, the samples were extracted from depths of 5, 10, 15, 30 and 40 feet in order to more uniformly space the samples. Based on the absence of any layers of low permeability in the upper portions of the soil horizons, and the loose, highly conductive nature of the sands that predominate the lithology, it is unlikely that a slight variance in the sampled intervals will significantly alter the chemical profile of the soil.

<u>Field Observations</u> - The brown color and coarse grain size of the sand remained consistent throughout the first 4 feet of the boring/suction lysimeter. At 4 feet, the sand became darker and slightly finer grained; the gravel and cobble fraction increased at 12 feet and continued to 14 feet.

Indications of possible contamination were based upon observations of odor, color, moisture content, and soil consistency. There were no indications of contamination.

LABORATORY PROGRAM AND ANALYSIS

Laboratory Program - A liquid sample was collected from Clarifier B-1-AH and analyzed for volatile organic compounds and oil and grease. Individual soil samples collected from B-1-AH-Bl were composited and analyzed for volatile organic compounds, cyanide, and surfactants.


Laboratory Analysis - The pertinent laboratory analysis results are summarized in Table B-1-AH. The liquid sample was found to contain 711 ug/kg 1,1-dichloroethane, 16.6 ug/kg tetrachloroethene, and 2.4 ug/kg toluene. A low level of chloroform contamination (5.7 ug/kg) was found in the composite soil sample in addition to a high concentration of methylene chloride (73.3 ug/kg). The concentrations of the remaining volatile organic compounds, cyanide, and surfactants were below the limits of detection.


CONCLUSIONS

Based on field observation (no odor) and laboratory analyses, it is unlikely that Clarifier B-1-AH is leaking, although there is soil contamination in the area. The liquid in Clarifier B-1-AH contains 1,1-dichloroethane but no methylene chloride. The composite soil sample contained a high concentration of methylene chloride but contained no 1,1-dicholoroethane. It is suspected that the methylene chloride and the chloroform in the soils are from surface spills.

RECOMMENDATION

Proceed with quarterly monitoring of the suction lysimeter.

Tank No.	: 	
Plant No./Ne	erest Bldg.	8-1/Bldg. 141 (N Side)
Tank:	Location :	1705 Victory Place
	Installation Date	1978
	Capacity, gal.	UMK
	Use/Process	Wash sink drainage clarifier (3-stage)
	Contents (past,CAS No.,date):	Poss. detergents
	(present,CAS Mo.)	Poss. detergents
	Construction Materials	Concrete
	Secentry	Ructanquiar
	Depth To Top	UNK
	Depth To Invert	UNK
	Diameter	2.2 ft
	Length (1)	8 ft
	Containment	None
	Corrosive Protection (2)	UNY
	Status	In service
Tank Piping:	kusber	UNK
	Туре	UHK
	Construction Mat.	Steel
Site:	Paving Material/Thickness	Asphalt
	Appear ance	UNX
	Surface Contamination	
Drilling	Rig Type/Requirements (3)	H.S. Auger
Program:	Borings (No.)	1
	Sample Depths	B1/5,10,15,30,40 ft
	Vapor Wells/Lysimeters (No.)	
		SLI/REF. TO BI
	Completion Interval	\$£1/9 ft
Laboratory P	rograe (%) No. of Tank Content Samples	2
	Parameters	Hydrocarbons Vol.Org.
	No. of Tank Soil Samples	I (Comp.)
	Parameters	Cn,504 Vol.Org.

				0000
CONSTRUCTION DETAILS	DEPTH	LOG	BLOW CNTS	LITHOLOGIC DESCRIPTION
	- 0 - - 2 - - 4 - - 6 - - 8 -	マンドン マンドン	28	-Asphalt -Sand,coarse grain to gravel varieagated brown
	- 10 - - 12 -	000	50+	-Color change,Sand,medium to coarse grain,darker brown,abundant small
3	- 14 - - 16 - - 18 - - 20 -		50+	cobbles from 11-13.5 ft
	- 22 - - 24 - - 26 - - 28 - - 30 -		50 ↔	
Ø Ø	- 32 - - 34 - - 36 - - 38 -			
COMPLETION & BACKFILL	- 40 -		50+	

-Suction Lysimeter at 9 ft

-Blank 2-in I.D.

PVC pipe, 0-5 ft -Concrete, 0-5 ft -Bentonite, 5-6 ft

-Clean sand & silica sand

mix, 5-10 ft -Native material, caved 10-40 ft

TANK NO. B-1-AH

BORING NO. B-1-AH-B1

TABLE B-1-AH: RESULTS OF CHEMICAL ANALYSES

PARAMETER	BACK- GROUND SAMPLE		: B-I-AH : LIQUID : UNTREATED	B-1-AH B1 COMPOSITE
Volatile Organics (ug/kg)	!	N.A.	!	
	1 <0.2		N.D.	N.D.
Ethyl Benzene	l (0.1		N.D.	N.D.
	1 (0.1		N.D.	5.7
Chioromethane	1 (0.2		N.D.	N.D.
Chioroethane	1 (0.8		H.D.	N.D.
1,1-Dichloroethane	: ⟨0.1		711	N.D.
1,2-Dichloroethane	(0.1		N.D.	N.D.
1,2-Dichloropropane	1 <0.1		! N.D.	N.D.
1,1,1-Trichlorethane	1 (0.2		N.D.	N.D.
1,1,2-Trichloroethane	1 (0.1		H.D.	N.D.
Bromodichloromethane	1 (0.1		i N.D.	N.D.
	(0.1		l N.D.	N.D.
1,1-Dichloroethene	(0.1		! N.D.	N.D.
trans-1,2-Dichloroethene	1 <0.1		l N.D.	N.D.
Trichloroethene	1 (0.3	± 2,040	l N.D.	N.D.
Tetrachloroethene	1 <0.4		16.6	N.D.
Toluene	1 <0.4		2.4	N.D.
Methylene Chloride	1 (0.5		N.D.	73.3
Petroleum Hydrocarbon (mg/kg) Dil & Srease (mg/kg)	: <2.0 : N.T.	N.A. N.A.	N.T. 1.0	N.T. N.T.
CAM Metals (mg/kg)	: 		: : N.T.	N.T.
Antimony	1 (2.5	500	!	
Arsenic	1 13.4	500	ŧ	
Barıum	1 91.9	10,000	i	
Beryllium	1 (1.0	75	; (
Caderus	1 (2.5	100	!	4 .
Chromium (Total)	1 9.6	2,500	i t	
Cobalt	6.5	8,000	!	
Copper	22.1	250	!	
Lead	1 (2.5	1,000	:	
Hercury	1 (0.1	20	!	
Molybdenum	1 6.3	3,500	i	
Nickel	8.4	2,000	! !	
Selenium	1 (2.5	100	ł	
Silver	1 (2.5	500	!	
Thallium	1 (2.5	700	1 •	
Vanadiu m	1 22.0	•	1	
Zinc	1 38.7	2,500	1	
Others	:			
pH (standard units)	8.24	N.A.	!	N.T.
Sodium (mg/kg)	N.T.	N.A.	1 1	N.T.
Cyanide (mg/kg)	1 (0.2	N.A.) 	(0.2
Surfactants (mg/kg)	1 N.T.	N.A.	! !	(0.5

N.A. - NOT AVAILABLE

N.D. - NOT DETECTED

N.T. - NOT TESTED

TILE - TOTAL THRESHOLD LIMIT CONCENTRATION

[±]o≠ka

Two borings, one of which was converted to a suction lysimeter, were drilled/installed to assess conditions surrounding Clarifier B-1-AI.

BORING B-1-AI-B1/SUCTION LYSIMETER B-1-AI-SL1

Monitoring Installations - Boring/Suction Lysimeter B-1-AI-B1/SL1 was drilled/installed to monitor the clarifier as indicated in the approved Work Plan. Both the actual and approved locations of the boring/suction lysimeter are indicated on the site map.

<u>Sampling Intervals</u> - Soil samples from the boring/suction lysimeter were to have been collected at depths of 5, 15, 20, 30 and 40 feet according to the Work Plan. However, in order to achieve more uniform spacing, the samples were collected from depths of 5, 10, 22, 30 and 40 feet.

Field Observations - The variegated color and medium to coarse grain size of the sand remained consistent throughout the first 10 feet of the boring/suction lysimeter. After 10 feet, the sand became increasingly finer. At 22 feet, the sand became light brown and very coarse grained. The frequency of cobbles increased at 20 feet and continued to 23 feet.

Indications of possible contamination were based upon observations of odor, color, moisture content, and soil consistency. There were no indications of contamination.

BORING B-1-AI-B1/SUCTION LYSIMETER B-1-AI-SL2

Monitoring Installations - Boring/Suction Lysimeter B-1-AI-B2/SL2 was installed slightly north of the approved location due to rig access problems. Both the actual and approved location of the suction lysimeter is indicated on the site map.

Sampling Intervals - Soil samples from the excavation for the suction lysimeter were to have been collected at a depth of 15 feet according to the Work Plan. However, in order to sample closer to the bottom of the clarifier, the sampled depth was changed to 10 feet. A 5-foot sample was also taken so that the clay, which is not indigenus to the area could be monitored.

Field Observations - The brown color and medium to coarse grain size of the sand remained consistent throughout the first 2 feet of the excavation for the suction lysimeter. At 2 feet, the sand disappeared and the lithology was instead dominated by brown sandy clay. The presence of a large amount of construction debris indicated the clay was not naturally deposited, but was, rather, brought in as fill. The clay disappeared at 6 feet and

TANK NUMBER B-1-AI supplement

ADDITIONAL INVESTIGATIONS

Clarifier B-1-Al, a three stage clarifier, receives waste water from a water filter on a paint spray booth. The clarifier receives inflow from a 6 inch line which connects to the west wall of the first stage. The clarifier discharges water through a 6-inch pipe, located in the east wall of the third stage, directly to the sewer. In order to determine the source of the contamination found in the soil adjacent to Clarifier B-1-AI during the initial drilling, a visual inspection was conducted. This inspection was done with approval by Mr. Al Novak of the Regional Water Quality Control Board (RWQCB).

The clarifier was inspected May 22, 1985. The level of fluid in the clarifier was 28 inches below the point of overflow. The liquid was pumped out and transported to a licensed hazardous waste facility. Approximately 18 inches of a paint-like sludge were removed from the floor of each stage with shovels. The clarifier was then steam cleaned and the rinse water pumped out. The clarifier was then entered and all surfaces closely inspected.

from 20 inches below the top and extending across the The walls, were coated with a chemically resistant fiberglass resin. There were no structural deficiencies found within the clarifier, constructed of monolithically formed concrete. There were several areas of rough or hummocky concrete, apparently the result of inadequate tamping concrete into the form. These rough areas are not considered There was, however, significant deterioration likely conduits. around both the inflow and outflow pipes. This deterioration is likely the result of differential thermal expansion rates between the iron pipe and the concrete sump walls. This happens when the concrete poured around the pipes shrinks and cools during the curing process, which makes a very tight fit. When warm liquid is introduced into the pipe, the iron tends to expand slightly faster than the surrounding concrete, which subsequently Moisture enters these minute fractures and eventually the concrete further. The subsequent deterioration degrades likely liquid conduit to the soil. This sort is present at both the point of inflow deterioration point of outflow. This may be the source of the contamination

0838

brown medium to coarse sand became the dominant lithologic unit. The frequency of cobbles increased at 1 foot and continued to 10 feet.

Indications of possible contamination were based upon observations of odor, color, moisture content, and soil consistency. There were no indications of contamination.

LABORATORY PROGRAM AND ANALYSIS

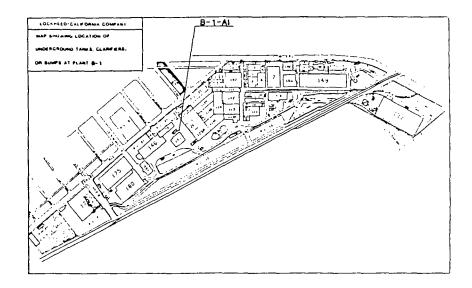
Laboratory Program - A liquid sample of the contents of Clarifier B-1-AI was collected and treated with nitric acid to maintain metals in a soluble form for subsequent CAM metals analysis. A second liquid sample was collected and analyzed for volatile organics, pH, and cyanide. Soil samples from the boring for Suction Lysimeter B-1-AI-SL1 were collected and analyzed for volatile organics, CAM metals, and pH. These analyses have been approved in the work plan.

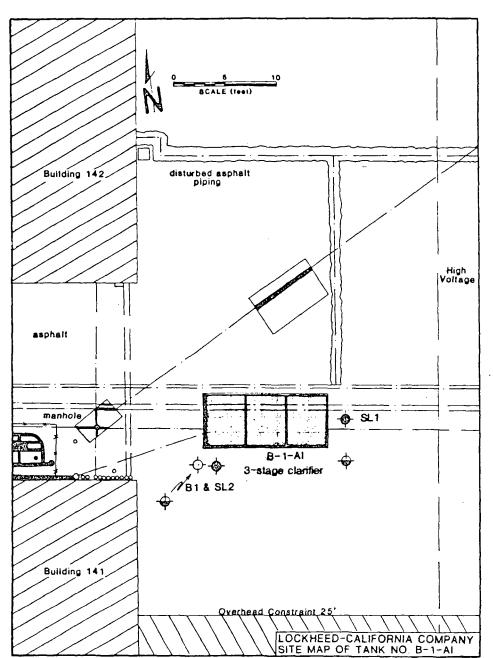
Laboratory Analysis - The pertinent laboratory analysis results are summarized in Table B-1-AI. The treated liquid sample was found to contain concentrations of CAM metals that are all below the limits of detection or near the levels reported for the background soil samples. The untreated liquid sample was found to contain 281 ug/kg tetrachloroethene. The concentrations of volatile organic compounds and cyanide, and the pH level reported for the B-1-AI-Bl composite soil sample were found to be below the limits of detection or near the levels reported for the background sample. A high concentration of acetone (196 ug/kg) was found in the soil sample obtained from the boring for Suction Lysimeter B-1-AI-SL1. The concentration of all other volatile organic compounds, CAM metals, and pH are below the limits of detection.

CONCLUSIONS

Based on field observations (no odor) and laboratory analysis results, it is concluded that it is unlikely that Clarifier B-1-AI is leaking. The soil at suction lysimeter B-1-AI-SLl near Clarifier B-1-AI, however, is contaminated with acetone. So the level of acetone in the B-1-AI-Bl composite soil sample is below the limit of detection, and a high concentration of tetrachloroethene was detected in the clarifier contents sample was not found in the soil samples, it is likely that the acetone found at B-1-AI-SLl is the result of a surface spill and not clarifier leakage.

RECOMMENDATION


Proceed with quarterly monitoring of lysimeters.


TANK NUMBER B-1-AI supplement continued

found in the adjacent soil. There is also evidence that periodic surface spillage of paints and associated liquids have taken place near the clarifier. This area is also used for drum storage. This may possibly be a source of some or all of the soil contamination.

FURTHER RECOMMENDATIONS

It is recommended that Clarifier B-l-AI's inflow and outflow pipes be renovated, and a coating similar to that which coats the rest of the clarifier be extended to the intersection of the pipe and concrete. Further, measures should be made to ensure no additional surface spillage, either from the drums or the handling of paints, adds to the contamination of the soil. This may include re-sealing the pavement with a non-pourous coating in the area.

lank Wo.		6-1-AI
Plant No./Nea		
Tank:	Location	1705 Victory Flace
	Installation Date	
	Capacity, gal.	! lusk
		Clarifier (3-stage)
	132111 00233	
	Contents (past,CAS No.,date)	UAIX
		i
	!	l
	(present,CAS No.)	UNK
		1
	Parala akan Makan II	
	Construction Materials	. LUNCTECE
	Secondary	Rectangular
	Depth To Top	JAK
	Depth To Invert	UNX.
	Diameter	5 ft
	Length (1)	12.4 ft
	Containment	: None
	Corrosive Protection (2)	;
	Status	la service
Tank Piping:	Busper	; : UNK
Tank Tiping.		· • • • • • • • • • • • • • • • • • • •
	Type	UNI.
	Construction Mat.	i Stee!
 Site:	Paving Material/Thickness	: Aspnalt
	****	: Disturbed asphalt
		1
	Surface Contamination	i Uhk
	****	;
Drilling Program:	Rig Type/Requirements (3)	H.S.Auger
	Borings (No.)	; ; ;
	Sample Depths	81/5,10,22,30,40
	Vapor Wells/Lystmeters (Mo.)	; 2
	· ·	
	Completing Interval	SL1/10 ft SL2/7 ft
	completion intellays	SL2/9 ft
		¦ '
Laboratory Pr	poram (4)	:
	Parameters	: 3 : : CAM,pH : Vol.Org.
		: Vol.Org.
	No. of Tank Soil Samples	i & i(Comp.)
	Faraneters	: CAM,Cn,pH ! Vol.Grg.
		Yol.Org.

				11830
CONSTRUCTION DETAILS	DEPTH	LOG	BLOW CNTS	LITHOLOGIC DESCRIPTION
	- 0 - - 2 - - 4 - - 6 -		23	-Asphalt -Sand, medium to coarse grain, variegated brown, w/gravel
	- 8 - - 10 - - 12 - - 14 - - 16 -		50≁	-Sand,finer grain w/depth some cobbles to 5-in diameter
g a	- 18 - - 20 - - 22 - - 24 -	0.0.0.0	50÷	-Sand coarse grain, variegated, moist, w/abundant cobbles & pebbles
5 0	- 26 - - 28 - - 30 - - 32 -	1.0.Q.0.	50÷	pennies
	- 34 - - 36 - - 38 - - 40 -		50÷	,·
COMPLETION & BACKFILL			4	

-Suction Lysimeter at 10 ft

-Blank 2-in I.D.

PVC pipe, 0-5 ft

-Concrete, 0-3 ft -Bentonite, 3-4 ft

-Clean sand & native mix 4-10 ft

-Native material, caved 10-40 ft

TANK NO. B-1-AI

BORING NO. B-1-AI-B1

GREGG & ASSOCIATES, INC.

CONSTRUCTION DETAILS	DEPTH	LOG	BLOW CNTS	LITHOLOGIC DESCRIPTION
	- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 -	1000-000000000000000000000000000000000		Asphalt -Sand, medium to coarse grain, brown, abundant gravel & cobbles -Clay, sandy, brown, w/abundant debris, animal bones, pipe fragments, steel elbow, unattached, abundant cobbles -Sand, medium to coarse grain, brown, moist, w/some cobbles
COMPLETION & BACKFILL -Suction Lysimeter	·			
at 10 ft				

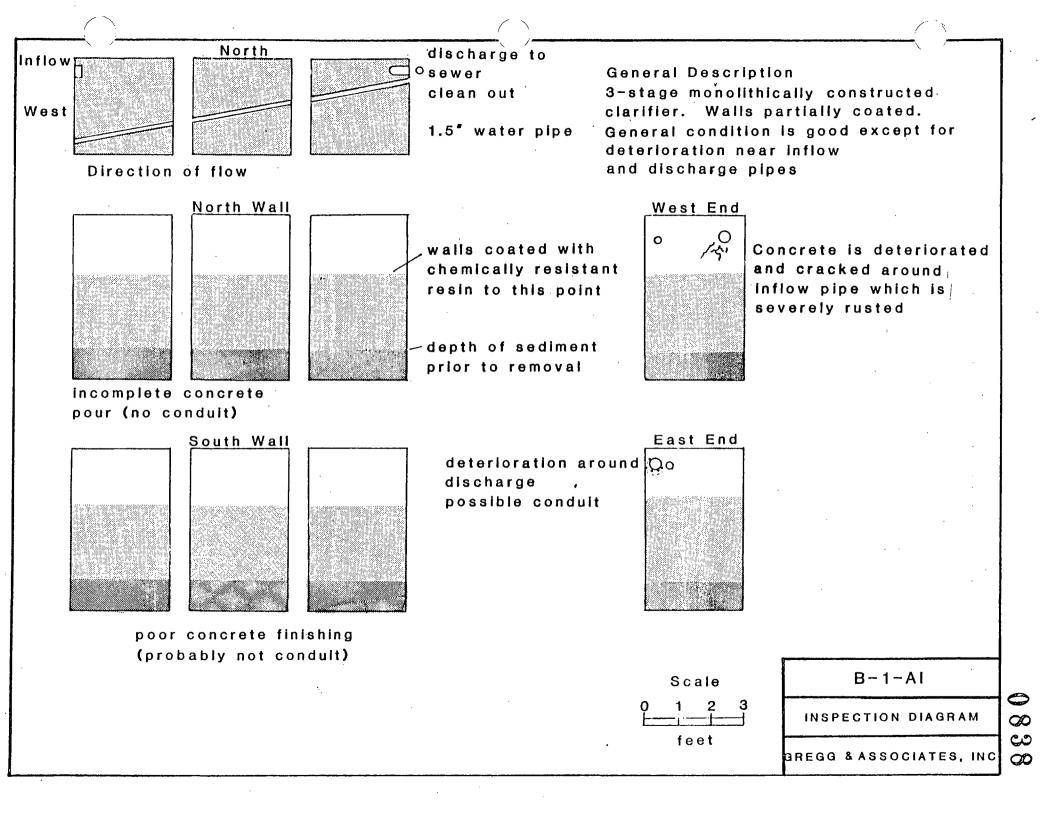
-Blank 2-in I.D.
PVC pipe, 0-5 ft
-Concrete, 0-3 ft
-Bentonite, 3-4 ft
-Clean sand, 4-6 ft
-Silica sand, 6-10 ft

TANK NO. B-1-AI

SUCTION LYSIMETER NO. B-1-AI-SL1

THALE 8-1-41: REBULTS OF CHEMICAL AWALTEES

	i BACK- i BAODAD : SAMFLE	,	: 6-1-Ai : Llouid : rreated	E-1-A! LIQUID UNTREATED	6-1-41 61/5L1 COMPUSITE	0-1-A1 SL2 10 ft.
volatile Organics (ug/kg)	:	N.A.	;			
Ben2eme	1.40.2		н.1.	i.5.	N.J.	M. Ė.
Ethyl penzene	1 - 4.1		N.T.	N.D.	N.O.	W. J.
บละอกอร์อกษ	1.0.1		l s.i.	Ν.Ú.	N.D.	N.J.
	1 (0.2		a.I.	a.Ū.	ñ.Ũ.	N.Ü.
ûniaroetname	: (v.8		N.T.	N.B.	a.b.	iv. u.
1.i-Dichlorderhame	1.00.1		. N.T.	0.0.	N.3.	.N. Ü.
.,imbich.ensethame	1		1 3.1.	۲	N. 2.	ă.9.
l,3-£ichlaropropane	: 40.1		3.1.	a, b .	A.J.	K.5.
i,:,l-ir:chiorethame	1 (0.2		1 4.1.	a.ė.	Ŋ.Ū.	Ň. ú.
.,i,I-Trichionoethane	1 (0.1		i n. i.	n.J.	H.J.	N.O.
ซีกอลอฮ่งcalorometame	$(-\sqrt{\theta},1]$		a.ī.	Ν.Ū.	N.Ū.	N.D.
dibromocalorometalae	1 19,1		1.1.	x:D.	M.G.	N.S.
!,i-bichioroethene	1 (6.1		i a.ï.	A.B.	a.b.	∦
trans-1.1-9:cmlurostasae	1 (0.1		l k.T.	N.J.	N.D.	A.D.
(rionioraeinene	1 \0.3	± 2,040	: N.I.	R.D.	ж.ш.	й. и.
lecrachtoroschene	1 <0.4		L A.T.	281	м.Ü.	N.S.
Toisene	1 (0.4		i N.T.	N.D.	N.Đ.	N.D.
Acadone	: 30.5 :		1 a.T.	a.D.	N.U.	195
hatrojewa hverstaroen (ag/kg/	1 ×2,6	ä.ä.	i N.T.	N.Ī.	N. I.	N.T.
011 & Gnease (ag/kg)	1 N.T.	й.й.	1 a.T.	N.T.	N. I.	₩.T.
CAM metals (mg/kg)			, :			
Antimony	1 (2.5	3%	0.59	R. L.	N. T.	(2.5
Ar Senic	. 10.4	500	1 (1.25	N.ï.	ii.ī.	5.9
Safloa	91.5	19.000	1 (0.125	6.1.	N.T.	45.1
Serylliu#	1/41.0	75	: ₹0.25	W.T.	N.1.	i.1
Casmium	1 (2.5	100	(0.13	N. I.	N.T.	(0.5
Chromium (Total)	1 9.6	2,500	0.5	si.f.	N.T.	4.4
Cesals	. 5.5		1 (0.25	ii. ī.	S.T.	4.0
	: 22.1		. v. 5	ñ.ī.	a.i.	
géád s				4. į.	a.i.	
Mercury	1 (0.1	20	: 0.3 IN GIL	a.I.	N.I.	₹0.1
nolyocanus	: 3.3	3.500	i (0.25	N.T.	N. F.	(1.0
Nichai	. 6.4	1,000	9.4	A.I.	N.T.	
ielealum	: :2.5	100	1 (1.25	N.T.	N.T.	
					N.I.	√2.å.
Fraillen	1 .2.5	700	(-0. 65 (-0.05 (-0.05	a.i.	n.T.	
Vanadium	. 20.0	2,400	(0.125	ä.T	N.T.	4.5
Elac -	1 75.7	2,590	i 6.3	d.ī.	a	1à.Ú
	·		:			
of tetangang white:			: L 11	7 57	5 A4	6.54
and the continuous of with the first		11 4 / 1 4		7 4 4 7		


K.A. - MOT RVAILMOLE

A.d. - NOT DETECTED

a.T. - 807 TESTED

FILC - TOTAL IndEEDLEG LIMIT CONCENTRATION

 $x = m \xi_T \sqrt{\xi}$

One boring, which was converted to a suction lysimeter, and one vapor monitoring well were drilled/installed to assess conditions surrounding Tank B-1-AJ. Several program changes were made concerning tanks in this area, all of which were discussed with Mr. Al Novak of the RWQCB.

Monitorin Installations

Boring/Suction Lysimeter B-l-AJ-Bl/SLl was drilled/installed to monitor the tank as indicated by Mr. Novak of the RWQCB. The location of the boring/suction lysimeter is indicated on the site map.

Sampling Intervals

Soil samples from the boring/suction lysimeter were to have been collected at depths of 5, 12, 17, 25 and 40 feet according to the Work Plan. However, in order to expedite the sampling precedure, intervals were shifted to 5, 10, 15, 30 and 40 feet. Based on the absence of any layers of low permeability in the upper portions of the soil horizons, and the loose, highly conductive nature of the sands that predominate the lithology, it is unlikely that a slight variance in the sampled intervals will significantly after the chemical concentration profile of the soil.

Field Observations

The dark gray medium to fine grain size of the sand remained consistent throughout the entire borhole. The occurence of cobbles remained sporadic throughout the excavation.

Indications of possible contamination were based upon observations of odor, color, moisture content, and soil consistency. The soils from just below the surface had a strong but steadily decreasing odor, indicating possible contamination.

Monitoring Installations

Vapor Monitoring Well B-1-AJ-MVl was installed to monitor the tank as indicated by Mr. Novak of the RWQCB. The location of the vapor monitoring well is indicated on the site map.

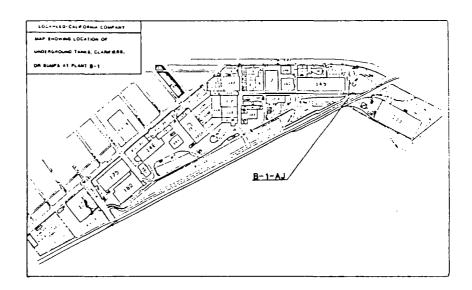
Sampling Intervals

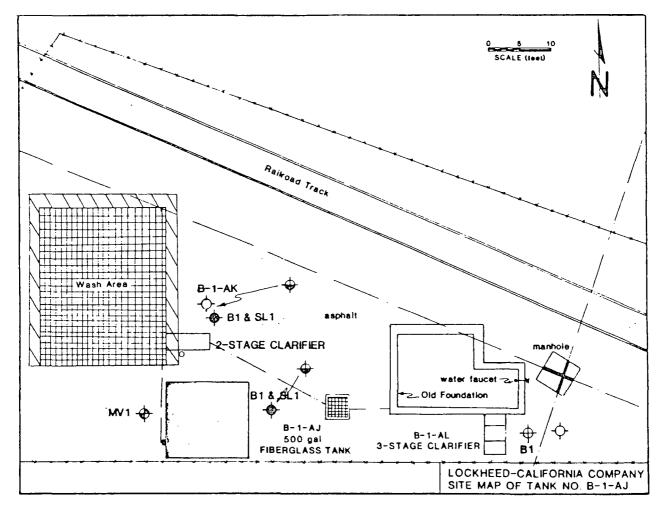
Soil samples were taken from the excavation for the vapor monitoring well at a depth of 12 feet, as approved in the Work Plan.

Field Observations

The dark gray color and medium to coarse grain size of the sand remained consistent throughout the first 8 feet of borehole. At 8 feet, the sand became dark brown and the gravel and cobble fraction decreased.

Indications of possible contamination were based upon observations of odor, color, moisture content, and soil consistency. The soils from just below the surface to 12 feet had a strong odor, indicating possible contamination.


LABORATORY PROGRAM AND ANALYSIS


Laboratory Program - A liquid sample was collected from Tank B-l-AJ and treated with nitric acid to maintain metals in soluble form for subsequent CAM metals analysis. A second liquid sample was collected and analyzed for volatile organic compounds and pH. Individual soil samples were collected from Boring B-l-AJ-Bl and analyzed for volatile organics, oil and grease, CAM metals, and pH. A sample was collected from Vapor Monitoring Well B-l-AJ-MVl and analyzed for oil and grease and pH.

Laboratory Analysis - The pertinent laboratory analysis results are summarized in Table B-1-AJ. The treated liquid sample was found to contain concentrations of CAM metals that are below the limits of detection. The untreated liquid sample was reported to have a very low pH (1.53). Volatile organic compounds were found to be below the limits of detection in the untreated liquid sample. The levels of volatile organic compounds, oil and grease, CAM metals, and pH in the soil samples collected from Boring B-1-AJ-Bl were found to be below the limits of detection or near the levels reported for the background samples. The soil sample from Vapor Monitoring Well B-1-AJ-MVl was found to contain a concentration of oil and grease and a pH that are near the background levels.

Conclusions - Based on field observations (slight odor) and laboratory analysis results, it is concluded that Tank B-1-AJ is not leaking.

<u>Recommendations</u> - Proceed with quarterly monitoring of the suction lysimeter and the vapor monitoring well.

Plant No./Nea	rest Bldg.	: : B-1/Bidg, 149 (Wash area
Tank:	Location	1705 Victory Place
	Installation Date	LUNK
	Capacity, gal.	:; 500
	Use/Process	: Wash unit holding tank
		¦
	Contents (past,CAS ho.,date)	; Oil and grease ;
		<u>.</u>
	(present,CAS No.)	: Water, oil and grease
		<u> </u> -
	Construction Materials	fiberglass
	Geometry	Cylindrical
	Depth Ta Top	Lank
	Depth To Invert	; UNK
	Diameter	L UHIK
	Length (1)	UAK
	Containment	None
	Corrosive Protection (2)	UNK
	Status	Currently inactive
lank Piping:	Nuaper	UHA
	Туре	` Unk
	Construction Mat.	Steel
51te:		i
	Appearance	: Disturbed asphalt
	Surface Contamination	UNK.
De illian	Kig Type/Requirements (3)	
Program:	Borings (No.)	
		,
	Semple Deptins	; bi/3,10,13,30,40 fc
	Vapor Wells/Lysimeters (No.)	
	Sample Depths	: SLi/KEF. Tû bi : MY1/12 ft
		!
	Completion Interval	: SL1/9 it : MV1/6-11.7 +t
		;
Laboratory Pr	ogram (4) No. of Tank Content Samples	; 3
		; ; ; САМ, рН
	, 4) 88 71613	Voi.⊕rg.
	NO. OF TANK SOLI SAMPLES	i 6
	Parameters	: hydrocarbons,pH
		Vol.Org.

-Blank 2-in I.D.

PVC pipe, 0-6 ft
-Screened 2-in I.D.

PVC pipe, 6-11.7 ft
-Concrete, 0-4 ft
-Bentonite, 4-5 ft
-Clean sand, 5-12 ft

TANK NO. B-1-AJ MONITORING WELL NO. B-1-AJ-MV1

GREGG & ASSOCIATES, INC.

CONSTRUCTION DETAILS	DEPTH	LOG	BLOW CNTS	LITHOLOGIC DESCRIPTION
	- 0 2 -	いくいく		-Asphalt 0838 -Sand, fine to medium grain, gray black, w/some cobbles, solvent odor
	- 4 6 -	0 0	21	
	- 8 -	0		
	- 10 - - 12 -	0	35	
	- 14 -	9	36	
2	- 16 - - 18 -	0		
ua a	- 20 -	0		
	- 22 -	D		-Decreasing odor w/depth
	- 26 -	0		
	- 28 - - 30 -	Ø	42	
	- 32 -	0	74	
	- 34 -	O		
(*	- 36 - - 38 -	S S		
	- 40 -	p	46	-No odor
COMPLETION & BACKFILL				

-Suction Lysimeter at 9 ft

-Blank 2-in I.D. PVC pipe, 0-5 ft

-Concrete, 0-4 ft -Bentonite, 4-5 ft

-Clean sand & native mix 5-10 ft

-Native material, caved 10-40 ft

TANK NO. B-1-AJ

BORING NO. B-1-AJ-B1

GREGG & ASSOCIATES, INC.

TABLE 8-1-AJ: RESULTS OF CHEMICAL ANALYSES

PARAMETER	: BACK- : GROUND : SAMPLE		B-1-AJ LIQUID TREATED	B-1-AJ LIQUID UNTREATED	B-1-AJ Bi 5 ft.	8-1-AJ B1 10 ft.	B-1-AJ B1 15 ft.	B-1-AJ B1 30 ft.	B-1-AJ B1 40 ft.	B-1-AJ MV1 12 ft.
Volatile Organics (ug/kg)	; -	N.A.	: : N.T.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.T.
Benzene	(0.2		ļ							
Ethyl Benzene	1 (0.1		ł							
Chlorofor #	1 (0.1		ł							
Chloromethane	1 (0.2		!							
Chloroethane	8.6> ;									
1,1-Dichloroethane	; ⟨0.1		1							
1,2-Dichloroethane	: ⟨0.1		Į.							
1,2-Dichloropropane	(0.1		! •							
1,1,1-Trichlorethame	1 (0.2		1							
1,1,2-Trichloroethane	1 (0.1		1							
Bromodichloromethane	1 <0.1		i							
Dibromochloromethane	: (0.1		1							
1,1-Dichloroethene	1 (0.1		!							
trans-1,2-Dichloroethene	(0.1		!							
Trichloroethene	(0.3	± 2,040	1							
Tetrachloroethene	: (0.4	•	ļ							
Toluene	1 <0.4		1							
Methyl Ethyl Ketone	1 (0.5									
Petroleum Hydrocarbon (mg/kg)		N.A.	. N.T.	н.Т.	N.T.	м.Т.	N.T.	N.T.	N.T.	N.T.
Dil & Grease (mg/kg)	! N.T.	N.A.	! N.T.	N.T.	0.8	1.1	0.8	<0.5	<0.5	2.7
CAM Metals (mg/kg)	1		; ;	N.T.	N.T.		N.T.	N.T.		N.T.
Antimony	1 (2.5	500	1 (0.005			(2.5			(2.5	
Arsenic	1 13.4	500	1 (0.005			8.95			13.5	
Barium	1 91.9	10,000	₹ ₹0.01			50.0			103	
Beryllium	{1.0	75	(0.02			(1.0			1.0	
Cadaiua	1 (2.5	100	0.001		•	(0.5			<0.5	
Chromium (Total)	1 9.6	2,500	(0.01			8.6			14.4	
Cobalt	1 6.5	8,000	(0.02			1.4			7.7	
Copper	22.1	250	(0.02			9.2			13.9	
Lead	1 <2.5	1,000	(0.005			₹2.5			<2.5	
Mercury	1 (0.1	20	(0.0005			(0.1			(0.1	
Nolybdena≡	6.3	•	(0.02			4.0			13.9	
Nickel	8.4	2,000	(0.01			6.8			12.2	
Selenium	1 (2.5	100	(0.005			(2.5			(2.5	
Silver	1 (2.5	500	(0.05			⟨2.5			(2.5	
Thallium	1 (2.5	700	(0.005			(2.5			(2.5	
Vanadıum	1 22.0	2,400	(0.01			19.6			33.1	
linc	3B.7	2,500	0.72			23.5			44.2	
Others	1		N.T.	1.53	8.47	7.74	8.07	N.T.	N.T.	8.54
pH (standard units)	8.24	N.A.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
Sodium (mg/kg)	l N.T.	N.A.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
Cyanide (ag/kg)	1 (0.2	N.A.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
Sulfate (ag/kg)	: N.T.	N.A.				*** * *	*** * *	14.0 1.4	174 1 4	11.1.4

N.A. - NOT AVAILABLE

A Anti-

N.D. - NOT DETECTED

N.T. - NOT TESTED

TTLC - TOTAL THRESHOLD LIMIT CONCENTRATION

One boring, which was converted to a suction lysimeter, was drilled/installed to assess conditions surrounding Clarifier B-l-AK.

BORING B-1-AK-B1/SUCTION LYSIMETER B-1-AK-SL1

Monitoring Installations - Boring/Suction Lysimeter B-1-AK-B1/SL1 was drilled/installed to monitor the clarifier as indicated in the approved Work Plan. The location of the boring is shown on the site map.

Sampling Intervals - Soil samples from the boring/suction lysimeter were to have been collected at depths of 5, 12, 17, 25 and 40 feet according to the Work Plan. However, in order to expedite sampling, the depths of the samples were shifted to 5, 10, 15, 30 and 40 feet. Based on the absence of any layers of low permeability in the upper portions of the soil horizons, and the loose, highly conductive nature of the sands that predominate the lithology, it is unlikely that a slight variance in the sampled intervals will significantly alter the chemical profile of the soil.

<u>Field Observations</u> - The gray color and medium grain size of the sand remained consistent throughout the first 18 feet of the boring/suction lysimeter. At 18 feet, the sand became a dark brown color.

Indications of possible contamination were based upon observations of odor, color, moisture content, and soil consistency. The soil from just below the surface to 40 feet had a strong odor indicating possible contamination. The odor diminished greatly, however, at 25 feet.

LABORATORY PROGRAM AND ANALYSIS

Laboratory Program - Individual-depth soil samples were collected from Boring B-1-AK-Bl and analyzed for volatile organic compounds, oil and grease, CAM metals, and pH as approved in the Work Plan.

Laboratory Analysis - The pertinent laboratory analysis results are summarized in Table B-1-AK. The concentrations of volatile organic compounds were found to be below the limits of detection in all of the samples. Low levels of oil and grease were found in the five foot and ten foot samples (4.2 and 7.7 mg/kg, respectively). Several CAM metals were found to be present in the 40-foot sample at slightly elevated concentrations ranging.

TANK B-1-AK (continued)

0838

The CAM metal concentrations found in the 10-foot sample and the pH levels of all samples were reported to be below the limits of detection or near the levels found in the background samples.

CONCLUSIONS

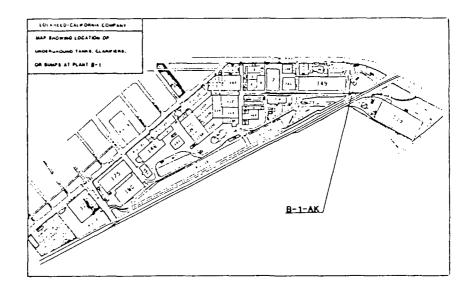
Based on field observations (slight odor) and laboratory analyses, it is concluded that Clarifier B-l-AK may possibly be leaking.

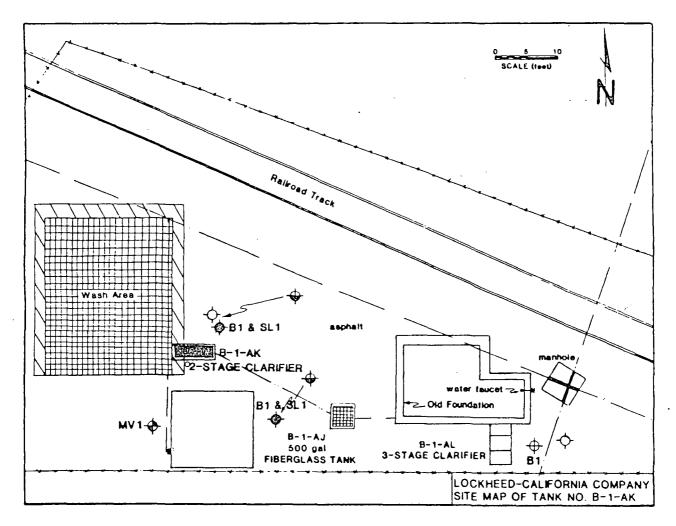
RECOMMENDATION

Additional sampling and analysis is required to determine if the high levels of CAM metals found in the 40 foot sample and the low levels of oil and grease in the shallow samples are due to clarifier leakage.

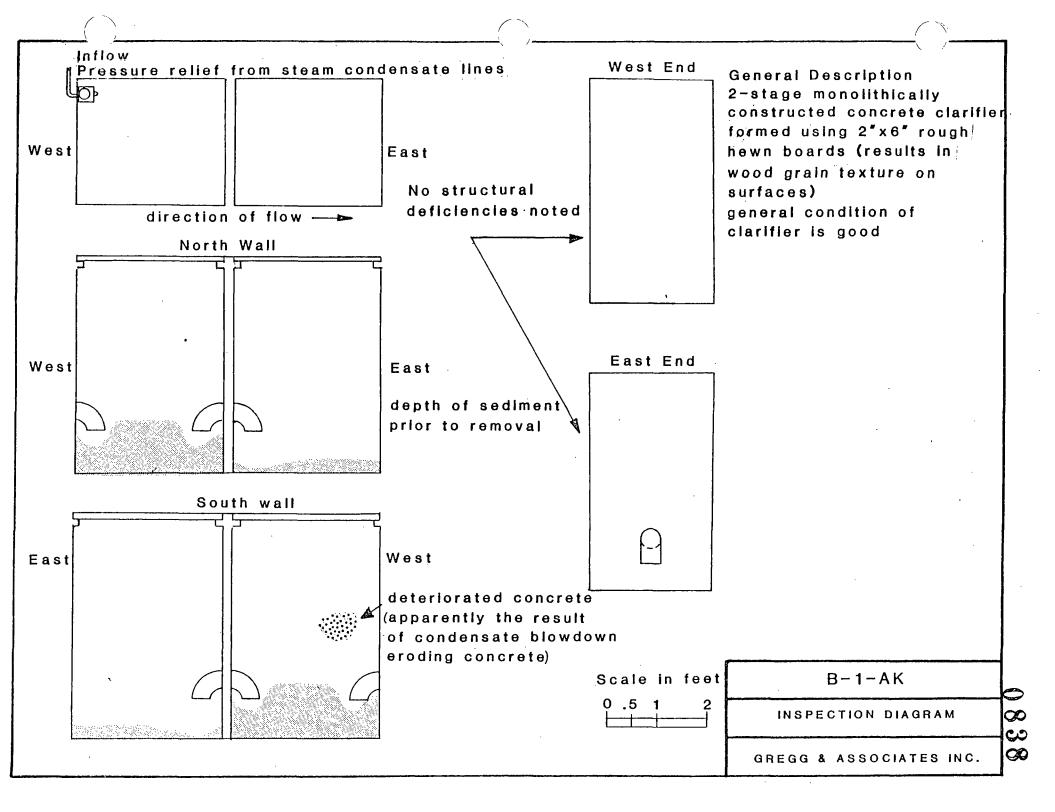
TANK NUMBER B-1-AK supplement

ADDITIONAL INVESTIGATIONS


Clarifier B-1-AK, a two-stage clarifier, currently receives condensate from a steamcleaner pressure relief valve. clarifier was originally used to disseminate solids from waste water collected in the bermed spray wash area. The clarifier is of monolithically formed reinforced Because the clarifier was constructed prior to common usage of single sheet forms, the surface of the concrete has rough wood grain marks left by individual 2- by 6-inch board forms. inflow enters through a grated cover over the first stage. clarifier discharges through a 4-inch pipe in the second stage. To determine the source of the moderate to high CAN metal concentrations found in the adjacent soil during the initial drilling near Clarifier B-1-AK, a visual inspection of the clarifier was conducted. This inspection was done with approval by Mr. Al Novak (RWQCB).


On the day of inspection (May 21, 1985), the clarifier contained 1.5 feet of sediment under 2 feet of basically clean water. water was pumped out and the sediment removed by shoveling. clarifier was then steamcleaned and pumped dry again. the steam condensate continued to discharge into the first stage, that chamber was not physically entered but was inspected from above. The second stage chamber was entered and closely inspected. The details of the visual inspection on the accompanying diagram. illustrated There were significant structural inadequacies or leaks apparent. There was, however, some concrete deterioration about 10 inches in diameter where the condensate discharges against the south wall of the first stage chamber. This is strictly a surficial blemish and probably not a conduit. There was also a small "pock mark" or indentation on the south wall of the first stage, apparently the result of poor tamping of concrete into the forms during This small hole does not penetrate the construction. width of the wall and is not a likely conduit.

It is concluded, based on visual inspection, that the clarifier is not leaking.


FURTHER RECOMENDATIONS

Proceed with quarterly monitoring of the suction lysimeter.

Tank No.		3-1-hr.
Flant No., Heares		6-liéing, 149 (maso areas)
i _{ańk} ;	Location	1705 Victory Frace
	instaliation date	Unit .
	Capacity, gai.	UNK
	UserProcess	. ##SN UNIT degreaser . . clarifier (2-stage) .
	Contents (past,CAS No.,date,	anu anu
	vpresent,čáj do.j	! !
	Construction Materials	. Concrete .
	Geometry	Rectangular
	Depan To Top	Uhk .
	Septin To invert	ent.
	Diameter	SAF
	Lengta (I)	. UKe
	Containment	hone
	Carrosive Fratection (2)	
	Status	Lurrently inactive
Tank Piping:	Nueger	uhř :
	Туре	i i ink
	Construction Mat.	i scaei
Site:	Paving Material/Inickness	Asymalt
	Appearance	: Disturbed aspnait :
		SNI.
ir illing Frug: a#:	Aig Typerheumirements ())	: H. S. nuger
,	Barings (Ao.)	·
		: : SI/S,10,15.30,40 rt :
		ì
	Vapor mellartisimeters indi:	· · · · · · · · · · · · · · · · · · ·
	Sample Sepths	: SLI/REF, 10 at : : :
		: Sulvi it : : : : : : : : : : : : : : : : : :
Liporatory Prog	ram (4) No. of Tank Content Samoies	1 .
	farameters	: :
•	No. of lank Soil Samples	
	Facameters	Caffynydrocarbons : pawnoswûrg, (
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•

			·	, 	0838
CONSTRUCTION DETAILS	DEPTH	LOG	BLOW CNTS	LITHOLOGIC	DESCRIPTION
	- 0 - - 2 -	スペンドベン		-Asphalt -Sand, medium some odor	grain,gray,
	- 4 - - 6 -		19		
	- 8 - - 10 - - 12 -		25		
	- 14 - - 16 -		41	-Sand, medium continued od	grain,gray,
6.4 6.4	- 18 - - 20 -			-Sand, color dark brown	change to
6	- 22 - - 24 - - 26 -			-Decreased od	lor
	- 28 - - 30 -		50 ‡		
Q	- 32 - 34 -				
	- 36 - - 38 - - 40 -		48		·
COMPLETION & BACKFILL					

-Suction Lysimeter at 9 ft

-Blank 2-in I.D.

PVC pipe, 0-5 ft -Concrete, 0-4 ft

-Bentonite, 4-5 ft -Clean sand & native mix

5-12 ft

-Native material, caved 12-40 ft

TANK NO. B-1-AK

BORING NO. B-1-AK-B1

GREGG & ASSOCIATES, INC.

PARAMETER	! BACK- ! GROUND ! SAMPLE		B-1-AK B1 5 ft.	B1	B-1-AK B1 15 ft.	B1 (DUP.)	B-1-AK B1 30 ft.	Bi
 Volatile Organics (ug/kg)	·; 	N.A.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Benzene	1 <0.2		}					
Etnyl Benzene	1 (0.1		ŀ					
Chloroform	1 (0.1		ì					
Chloromethane	1 (0,2		ŀ					
Chloroethane	1 (0.8		ļ					
1,1-Dichloroethane	; ⟨0.1		}					
1,2-Dichloroethane	1 (0.1		l					,
1,2-Dichloropropane	1 <0.1		ł.					
1,1,1-Trichlorethane	: <0.2		!					
1,1,2-Trichloroethane	1 ⟨0.1		;					
Bromodichloromethane	: <0.1		¦					
Dibromochloromethane	: (0.1		ł					
1,1-Dichloroethene	1 <0.1		! !					
trans-1,2-Dichloroethene	1 (0.1		ì					
Trichloroethene	1 <0.3	± 2,040	}					
Tetrachloroethene	1 (0.4	•	1					
Toluene	1 <0.4		;					
Methyl Ethyl Ketone	: <0.5		1					
Petroleum Hydrocarbon (mg/kg)	-: : <2.0	N.A.		N.T.	N.T.	N.T.	N.T.	N.T.
Oil & Srease (mg/kg)	N.T.	N.A.	4.2	7.7	0.8	N.T.	0.8	<0.5
CAM Metals (mg/kg)	!	_	N.T.		м.Т.	N.T.	N.T.	
Antimony	1 (2.5	50ú	;	⟨2.5				(2.5
Arsenic	1 13.4	500	ł	6.7				21.9
Barium	1 91.9	10,000	}	40.3				186
Berylliu a	1 (1.0	75	<u>!</u>	(1.0				1.0
Caderum	1 (2.5	10Ú	i	(0.5~				⟨0.5
Chromium (Total)	9.6	2,500	ŀ	5.9				24.7
Cobalt	1 6.5	8,000	ł	1.9				12.0
Copper	1 22.1	250	!	5.3				28.0
Lead	1 <2.5	1,000	!	(2.5				3.5
Mercury	(0.1	20		(0.1				(0.1
Molybdenum	6.3	3,500		4.4				24.0
Nickel	8.4	2,000] }	3.7				20.Ú
Selenium	(2.5	100		(2.5				(2.5
Silver	1 <2.5	500		⟨2.5				<2.5
Thallium	(2.5	70û		(2.5				(2.5
Vanadium	22.0	2,400	l	11.9				43.8
linc	38.7 -!	2,500	¦	20.2				67.7
Others						N.T.	 	
pH (standard units)	8.24	N.A.	8.32	7.82	7.50		8.84	8.77
Sodium (mg/kg)	I N.T.	N.A.	N.T.	N.T.	N.T.		N.T.	N.T.
Cyanide (mg/kg)	1 <0.2	N.A.	N.T.	N.T.	N.T.		N.T.	N.T.
Sulfate (mg/kg)	1 N.T.	N.A.		N.T.	N.T.		N.T.	N.T.

N.A. - NOT AVAILABLE

N.D. - NOT DETECTED

N.T. - NOT TESTED

TTLC - TOTAL THRESHOLD LIMIT CONCENTRATION

mazka

One boring was drilled to assess conditions surrounding Clarifier B-1-AL.

BORING B-1-AL-B1

Monitoring Installations - Boring B-l-AL-Bl was drilled to monitor the clarifier as indicated in the approved Work Plan. The location of the boring is shown on the site map.

<u>Sampling Intervals</u> - Soil samples were taken from the Boring at depths of 5, 12, 17, 25 and 40 feet, as approved in the Work Plan.

<u>Field Observations</u> - The dark brown color and medium to coars grain size of the sand remained consistent throughout the first 12 feet of the boring. At 12 feet, the color of the sand changed from dark brown to light brown.

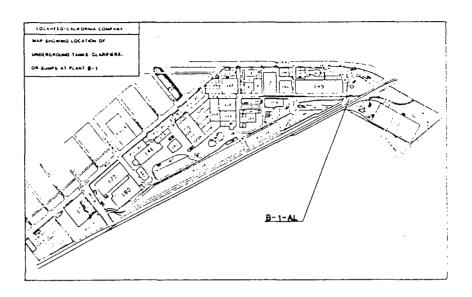
Indications of possible contamination were based upon observations of odor, color, moisture content, and soil consistency. There were no indications of contamination.

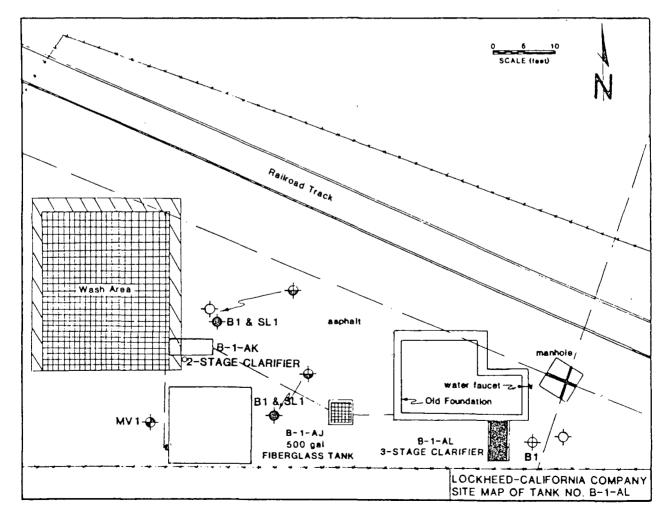
LABORATORY PROGRAM AND ANALYSIS

Laboratory Program - A liquid sample was collected from Clarifier B-1-AL and treated with nitric acid to maintain metals in soluble form for subsequent CAM metals analysis. A second liquid sample was collected and analyzed for volatile organics and pH. Individual soil samples were composited and analyzed for volatile organics and pH. Individual soil samples were composited and analyzed for volatile organics, petroleum hydrocarbons, and pH. These analyses have been approved in the Work Plan.

Laboratory Analysis - The pertinent laboratory analysis results are presented in Table B-1-AL. The treated liquid sample of the contents of Clarifier B-1-AL was found to contain concentrations of CAM metals that are below the limits of detection or near the levels reported for the background samples. The untreated liquid sample was found to have a concentration of 10.8 mg/kg petroleum hydrocarbons. Levels of volatile organic compounds and pH were reported to be below the limits of detection or near the levels found in the background samples. The concentrations of volatile organic compounds and petroleum hydrocarbons and the pH level in the composited soil sample from Boring B-1-AL-Bl were found to be below the limits of detection or near the levels reported for the background samples.

TANK B-1-AL (continued)


0838


CONCLUSIONS

Based on field observations and laboratory analyses, it is concluded that Clarifier B-l-AL is not leaking.

RECOMMENDATION

Proceed with quarterly monitoring of the suction lysimeter.

One boring, which was converted to a vapor monitoring well, and one exclusive boring were drilled/installed to assess conditions surrounding Sump B-1-AM.

BORING B-1-AM-B1/VAPOR MONITORING WELL B-1-AM-MV1

Monitoring Installations - Boring B-l-AM-Bl/Vapor Monitoring Well B-l-AM-MVl was drilled/installed to monitor the waste oil sump as indicated in the approved Work Plan. Three attempts were made to drill the boring to the planned depth. Underground obstructions prevented successful completion of the first two attempts. The third attempt reached a successful depth of 40 feet. The location of the boring/vapor monitoring well is indicated on the site map.

<u>Sampling Intervals</u> - Soil samples from the boring were to have been collected at depths of 5, 11, 16, 25 and 40 feet according to the Work Plan. However, because of the contamination present, the number of samples collected was increased. Depths sampled were 3, 5, 9, 14, 30 and 40 feet.

<u>Field Observations</u> - The gray medium to coarse grain size of the sand remained consistent throughout the first 23 feet of the boring. At 23 feet, the sand became brown in color and the gravel and cobble fraction increased.

Indications of possible contamination were based upon observations of odor, color, moisture content, and soil consistency. The soils from 2 feet to 40 feet had a strong odor indicating possible contamination.

BORING B-1-AM-B2

Monitoring Installations - Boring B-1-AM-B2 was drilled to monitor the waste oil sump as indicated in the approved Work Plan. The location of the boring is indicated on the site map.

Sampling Intervals - Soil samples from the boring were to have been collected at depths of 5, 11, 16, 25 and 40 feet according to the Work Plan. However, to expedite the sampling process, samples were collected from depths of 7, 16, 23, 30 and 40 feet. Based on the absence of any layers of low permeability in the upper portions of the soil horizons, and the loose, highly conductive nature of the sands that predominate the lithology, it is unlikely that a slight variance in the sampled intervals will significantly alter the chemical concentration profile of the soil.

<u>Field Observations</u> - The gray medium to coarse grain size of the sand remained consistent throughout the first 14 feet of the boring. At 14 feet, the color of the sand became brown, and the

Tank No.		B-1-AL :
Plant No./Near	est Bldg.	B-1/Bldg, 149 (Wash area):
Tanki	Location	1705 Victory Place
	Installation Date	UNK
	Capacity, gal.	UNK
	Use/Process	Wash unit clarifier (3-stage)
	Contents (past,CAS No.,date)	UNK
	(present,CAS No.)	UNK
	Construction Materials	Concrete
	Geometry	Full angular
	Depth To Top	UNK
	Depth To Invert	
	Diameter	3.5 ft
	Length (1)	1 i
	Containment	l None
	Corrosive Protection (2)	UNK
	Status	: To be abandoned :
Tank Piping:	Number	: UNK
	Туре	. UNK
	Construction Mat.	l Steel
Site:	Paving Material/Thickness	: Asphalt
	Appearance	: Disturbed asphalt :
	Surface Contamination	UNK
Drilling	Rig Type/Requirements (3)	
Program:	Borings (Ma.)	
	Sample Depths	
	Vapor Wells/Lysimeters (kg.)	
	Sample Depths	;
	·	(
	Completion Interval	
1 10-1		
Laboratory Pri	No. of Tank Content Samples	
		: CAM,pH,Vol.Org. : : Hydrocarbons
	No. of Tank Soil Samples	1(Comp.)
	Parameters	; ; pH,Vol.Org. ; Hydrocarbons
	••••••••••	

			L .	<u> </u>
CONSTRUCTION DETAILS	DEPTH	LOG	BLOW CNTS	LITHOLOGIC DESCRIPTION
	- 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 -	LOG		-Asphalt -Sand, medium to coarse grain, dark brown -Sand, fine to medium grain, light brown
0 0 0	- 30 - - 32 -			
O O O O	- 34 - - 36 - - 38 - - 40 -		50+	,
COMPLETION & BACKFILL			1	

TANK NO. B-1-AL

BORING NO. B-1-AL-B1

⁻Asphalt, 0-0.5 ft -Concrete, 0.5-4 ft -Bentonite, 4-5 ft -Native material, backfill 5-40 ft

PARAMETER	: BACK- : GROUND : SAMPLE		LIBUID	B-1-AL L1QUID UNTREATED	B-1-AL B1 COMPOSITE
Volatile Organics (ug/kg)		N.A.	! N.T.	N.D.	N.D.
Benzene	(0.2		1		
Ethyl Benzene	1 (0.1		:		
Chlorofor a	: (0.1		ļ		
Chioromethane	1 (0.2		1 1		
Chloroethane	1 <0.8) 1		
1,1-Dichloroethane	1 (0.1		1		
1,2-Dichloroethane	1 <0.1		1		
•	1 (0.1		l		
	1 (0.2		Į.		
•	1 <0.1		1		
• •	1 (0.1		:		
	1 (0.1		ł		
	1 (0.1		ļ		
•	1 (0.1		!		
Trichloroethene		± 2,040	:		
Tetrachloroethene	1 (0.4	-1	!		
Toluene	1 (0.4		i		
Methyl Ethyl Ketone	(0.5		! •		
Petroleum Hydrocarbon (mg/kg) Oil & Grease (mg/kg)	(2.0 N.T.		N.T. N.T.	N.T. 10.8	(0.5 N.T.
 CAM Retals (mg/kg)	: :		; ;	N.T.	N.T.
Antimony	1 <2.5	50ú	(û.25		
Arsenic	1 13.4	500	(0.25		
Bariu∎	1 91.9	10,000	1 19.1		
Beryllium	(1.0	75	(0.1		
Cadmium	1 (2.5		1 0.30	4.	
Chromium (Total)			1.20		
Cobalt	1 6.5		{ (0.1		
Capper	1 22.1	ar.	1.1		
Lead	1 <2.5		4.0		
Mercury	1 (0.1	•	H.T.		
Moiybdenum	1 6.3	3,500	0.20		
Nickel	8.4	•	0.30		
Selenium	1 (2.5	•	(0.25		
Silver	(2.5	500	0.5		
Thallium	1 (2.5	700	(0.05		
Vanadiu a	22.0	2,400	(0.05		
Zinc	38.7	2,500	21.7		
 Others	: :		! N.T.	••	
	1 8.24	N.A.	! !	7.69	8.30
pH (standard units)					
•	! N.T.	N.A.	i	N. I.	N. I.
Sodium (mg/kg)	! N.T.		;	N.T. N.T.	N.T. N.T.

N.A. - NOT AVAILABLE

N.D. - NOT DETECTED

N.T. - NOT TESTED

TILE - TOTAL THRESHOLD LIMIT CONCENTRATION

One boring, which was converted to a vapor monitoring well, and one exclusive boring were drilled/installed to assess conditions surrounding Sump B-1-AM.

BORING B-1-AM-B1/VAPOR MONITORING WELL B-1-AM-MV1

Monitoring Installations - Boring B-1-AM-Bl/Vapor Monitoring Well B-1-AM-MVl was drilled/installed to monitor the waste oil sump as indicated in the approved Work Plan. Three attempts were made to drill the boring to the planned depth. Underground obstructions prevented successful completion of the first two attempts. The third attempt reached a successful depth of 40 feet. The location of the boring/vapor monitoring well is indicated on the site map.

<u>Sampling Intervals</u> - Soil samples from the boring were to have been collected at depths of 5, 11, 16, 25 and 40 feet according to the Work Plan. However, because of the contamination present, the number of samples collected was increased. Depths sampled were 3, 5, 9, 14, 30 and 40 feet.

<u>Field Observations</u> - The gray medium to coarse grain size of the sand remained consistent throughout the first 23 feet of the boring. At 23 feet, the sand became brown in color and the gravel and cobble fraction increased.

Indications of possible contamination were based upon observations of odor, color, moisture content, and soil consistency. The soils from 2 feet to 40 feet had a strong odor indicating possible contamination.

BORING B-1-AM-B2

Monitoring Installations - Boring B-l-AM-B2 was drilled to monitor the waste oil sump as indicated in the approved Work Plan. The location of the boring is indicated on the site map.

Sampling Intervals - Soil samples from the boring were to have been collected at depths of 5, 11, 16, 25 and 40 feet according to the Work Plan. However, to expedite the sampling process, samples were collected from depths of 7, 16, 23, 30 and 40 feet. Based on the absence of any layers of low permeability in the upper portions of the soil horizons, and the loose, highly conductive nature of the sands that predominate the lithology, it is unlikely that a slight variance in the sampled intervals will significantly alter the chemical concentration profile of the soil.

Field Observations - The gray medium to coarse grain size of the sand remained consistent throughout the first 14 feet of the boring. At 14 feet, the color of the sand became brown, and the

gravel and cobble fraction decreased. At 20 feet, the sand became very coarse. At 24 feet, the sand became finer and the color lighter.

The soil from 4 to 40 feet had a strong odor indicating possible contamination.

LABORATORY PROGRAM AND ANALYSIS

Laboratory Program - Individual-depth samples were collected from Boring B-1-AM-Bl and analyzed for 1,2-dichloroethene, toluene, hexane, methyl cyclohexane, methyl-3-heptanone, and petroleum hydrocarbons. Volatile organic and oil and grease analyses were conducted on individual-depth samples collected from Boring B-1-AM-B2. A composite of the samples from Boring B-1-AM-B2 was analyzed for CAM metals.

Laboratory Analysis - The pertinent laboratory analysis results are summarized in Table B-1-AM. High levels of organic compounds were found in the soil samples collected from Borings B-1-AM-B1 and B-1-AM-B2. Very high concentrations of petroleum hydrocarbons were found in the three and five foot samples from Boring B-1-AM-B1 (490 and 19,500 mg/kg, respectively). The CAM metal analysis conducted on the B-1-AM-B2 soil composite identified several metal concentrations slightly above background levels (arsenic, chromium, and vanadium). The levels of these elements were, however, far below the TTLC levels.

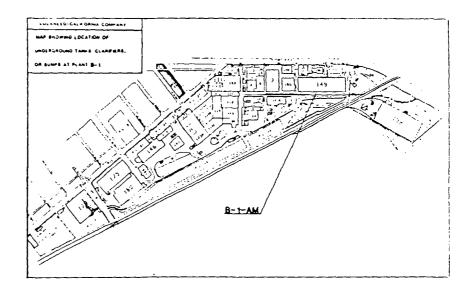
CONCLUSIONS

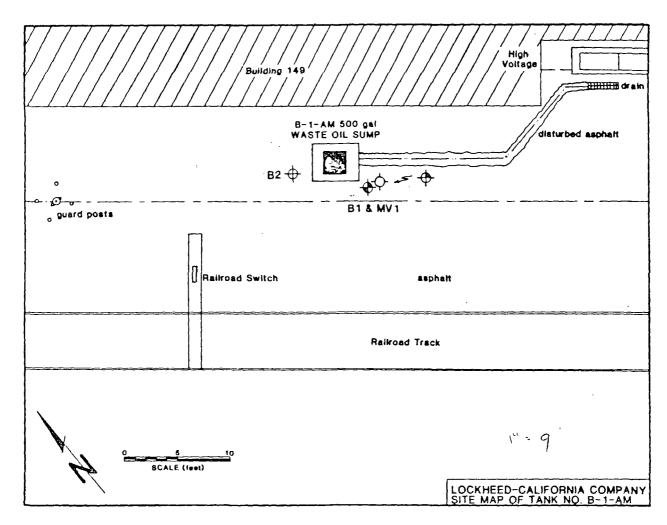
Based on field observations (strong odor) and laboratory analysis results, it is concluded that Sump B-1-AM is possibly leaking. High levels of organic compounds were found in the soil samples collected from both Boring B-1-AM-B1 and Boring B-1-AM-B2. Very high levels of petroleum hydrocarbons were found at the shallower depths of Boring B-1-AM-B1. As the depth to the bottom of Sump B-1-AM is only six feet, the high levels of petroleum hydrocarbons could be attributed to sump leakage, although there is a high probability that contamination is from surface sources. Further, there is some construction debris present at shallow depths which could have also been accompanied by disposal of materials other than construction debris.

RECOMMENDATION

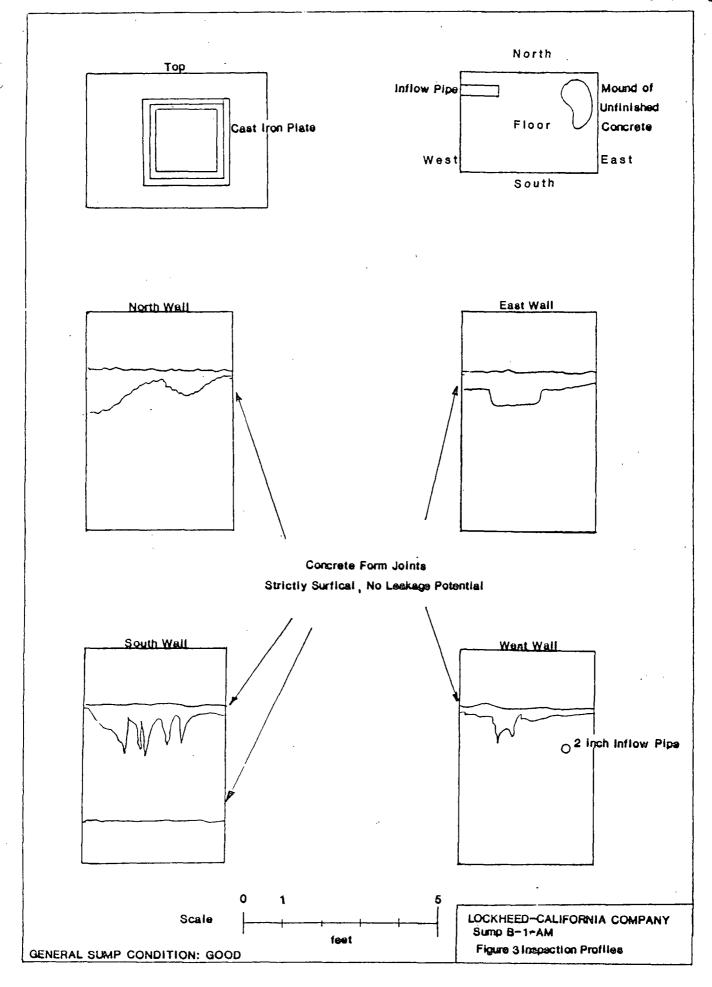
Sump inspection as well as additional drilling, sampling, and chemical analysis is required to determine the source and extent of soil contamination.

TANK NUMBER B-1-AM supplement


ADDITIONAL INVESTIGATIONS


Sump B-1-AM was inspected on May 6, 1985. This concrete sump, although larger, is similiar to Sumps B-1-AW and B-1-J in its operational use and construction. The sump is monolithic in construction and all walls are at least 5-inches thick. There are small horizontal joint marks present on the walls near the top and also near the bottom of the sump. These joint marks are merely small ridges of concrete which hardened between form boards and do not affect the integrity of the concrete. The surfaces are smooth except for the floor which is slightly uneven but apparently structurally sound.

Based on the results of the visual inspection it is concluded Sump B-1-AM is not leaking. The contamination present in the adjacent soil is probably attributable to the periodic overfilling of the sump or fugitive surface spillage of other materials.


FURTHER RECOMENDATIONS

The walls of Sump B-1-AM are being extended to prevent overflow.

ians do.		THE PRESE
Flant No./Neares		8-1/8199, 149 (SE Side) :
Tank:		1705 Victory Frace
	Installation Date	SAR
	Capacity, gas.	δύ ύ :
	Use/frocess	waste myoraulic oil Subo :
	Contents (past,Chb No.,dater	#aste Nydraulic dii 5000 .
	ipresent.2n3 Ho.)	waste nyorawiic oil swap ;
	Construction Materials	i Concrete
	üeGáétry	beafe
	pepth To Top	ÜNZ.
	Depth To invert	6 ft :
	Û.a#etêr	
	Cength (1)	i 2,2 (t . ii
	Containment	Mone :
	Corrosive Frotection (2)	ÜAK .
	Status	In service 1
Tane Piping:	Numper	UNK
	Туре	L unk
-	Construction Mat.	i Steei
::::::::::::::::::::::::::::::::::::::	Paying Macerial/Iniciness	: Aspnait :
	Appearance	Fast .
		Spiii piude argung area .
Drilling Frogram:	Kig Typerhequirements (3)	inspection i
	barings (No.)	2
		: 61/3,5,7.14,70,40 fc : : 62/7,16,23,30.40 ft :
	Vapor melis/Lysimeters (No.)	1
	Sample Depths	!
		MVI/5-11 +c :
Langratory Proc		
	No. of Tank Content Samples	
	Paraweters	:
	NO. Of lank Soll Samples	i lù i
	Parameters	: CAN.Voi.Org. : Hydrocaroons
		'

-Blank 2-in I.D.
PVC pipe, 0-5 ft
-Screened 2-in I.D.
PVC pipe, 5-11 ft
-Concrete, 0-3 ft
-Bentonite, 3-4 ft
-Clean sand, 4-15 ft
-Native material, caved
15-40 ft

TANK NO. B-1-AM

BORING NO. B-1-AM-B1

GREGG & ASSOCIATES, INC.

	CONSTRUCTION DETAILS	DEPTH	LOG	BLOW CNTS	LITHOLOGIC DESCRIPTION
	<u>68</u> %.6.5.6.	- 0 - - 2 - - 4 -	(\(\frac{\chi}{\chi}\)		-Asphalt -Sand, medium to coarse grain, gray-brown, w/ gravel & cobbles strong odor at 4 ft
		- 6 - - 8 - - 10 -	0,0.0.0	30	-Odor decreases
		- 12 - - 14 - - 16 -	, . C	39	-Color change, sand, medium to coarse grain, brown, w/gravel & cobbles, slight odor
	δ 3	- 18 - - 20 - - 22 - - 24 -		50+	-Grainsize change, very coarse, back to medium to coarse by 24 ft,
	2	- 26 - - 28 - - 30 -	<i>ੈ.0</i> 0 0	50+	occasional cobbles
	200	- 32 - - 34 - - 36 -	0 , 0 , 0		
	COMPLETION & BACKFILL	- 38 - - 40 -	. G G	50+	-Sand, increase in fine grain
	-Concrete, 0-4 ft -Bentonite, 4-5 ft -Clean sand, 5-10 ft -Native material, caved 10-40 ft	1AT	NK NO.	_B-	<u>1-AM</u> _
_		ВО	RING N	0. <u>B-</u>	1-AM-B2

0838

		,	,		0000
,.	CONSTRUCTION DETAILS	DEPTH	LOG	BLOW CNTS	LITHOLOGIC DESCRIPTION
	CONSTRUCTION DETAILS	- 0 - - 2 - - 4 - - 6 - - 8 - - 10 -	LOG	12	Asphalt Sand, grey brown, some pebbles and cobbles, no odor Color change at 5, becomes brown Ring sample at 6
		- 12 - - 14 -		20	Ring sample at 12
		- 16 -			Becomes browner at 15
	20	- 18 -			1
		- 20 -			At 21, Sand, rich brown,
		- 22 -		20	medium fine, no odor Ring sample at 22
		- 24 - - 26 -			At 26, Sand, variegated,
	0.6	- 28 -			coarse, some gravel, no odor
		- 30 -			
		- 32 -			
		- 34 -			
	(2 2) 河 (4)	- 36 -			
	COMPLETION & BACKFILL	- 38 - - 40 -			Ring sample at 40
	-Blank 2-in I.D. PVC pipe, 0-10 ft -Screened 2-in I.D. PVC pipe, 10-20 ft -Cement, 0-0.5 ft	70			End of hole at 41

TANK NO. B-1-AW

-Sand, 0.5-7 ft

-Bentonite, 7-9 ft Clean sand, 9-20 ft Parent material, 20-41 ft

BORING NO. B-1-AW-MV1

	BACK- GROUND SAMPLE		B-1-AM B1 3 ft.	B1 5 ft.	B1 9 ft.	B1 14 ft.	B1 30 ft.	B1 40 ft.
	1		-					
Benzene	(0.2		N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
Benzene Ethyl Benzene	(0.1		N.T.		N.T.		N.T.	N.T.
Chloroform	(0.1		N.T.	N.T.	N.T.		N.T.	N.T.
Chloromethane	(0.2		N.T.	N.T.	N.T.		N.T.	N.T.
Chloroethane	((0.B		N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
1,1-Dichloroethane			N.T.	N.T.		N.T.	N.T.	N.T.
1,2-Dichloroethane	(0.1		N.T.			*3.7	N.T.	N.T.
1,2-Dichloropropane			N.T.			N.T.	N.T.	N.T.
1,1,1-Trichlorethane			N.T.			N.T.	N.T.	N.T.
1,1,2-Trichloroethane			N.T.			N.T.	N.T.	N.T.
						N.T.	N.T.	N.T.
trans-1,2-Dichloroethene						N.T.	N.T.	N.T.
Trichloroethene					N.T.	N.T.	N.T.	N.T.
Tetrachloroethene						N.T.	N.T.	N.T.
Toluene								
Hexane			N.T.				N.T.	N.T.
Methyl Cyclohexane								N.T.
Methyl-3-Heptanone	i N.T.		N.T.	N.T.	N.T.	ŧ0.70	± 0.78	£0.69
Petroleum Hydrocarbon (mg/kg) Oil & Grease (mg/kg)	1 (2.0	N.A.	490	19500	(4	<4	<4	₹4
 CAM Metals (mg/kg)								
Antimony			1					
	1 13.4	500	:					
Barium	1 91.9	10,000						
Berylliu s	1 (1.0	75	}					
Cadaium	1 (2.5	10ů	}	•				
Chromium (Total)	9.6	2,500	l i					
	6.5	8,000	[
Copper	22.1		ŀ					
Lead	1 (2.5	1,000	;					
Mercury	1 (0.1	20	;					
Hol yodenum	6.3	3,500	1					
•	8.4	2,000	}					
	1 <2.5	100	}					
Silver	1 (2.5	500	ł					
Thallium	1 (2.5	700	1					
Vanadium	1 22.0	2,400	;					
Zinc	38.7	2,500	<u> </u>					
Others			N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
pH (standard units)	8.24	N.A.	!			-		
•	N.T.	N.A.	!					
	1 (0.2	N.A.	<u> </u>					
	N.T.	N.A.						

N.A. - NOT AVAILABLE

N.D. - NOT DETECTED

N.T. - NOT TESTED

TTLC - TOTAL THRESHOLD LIMIT CONCENTRATION

[•] **a**q/kq

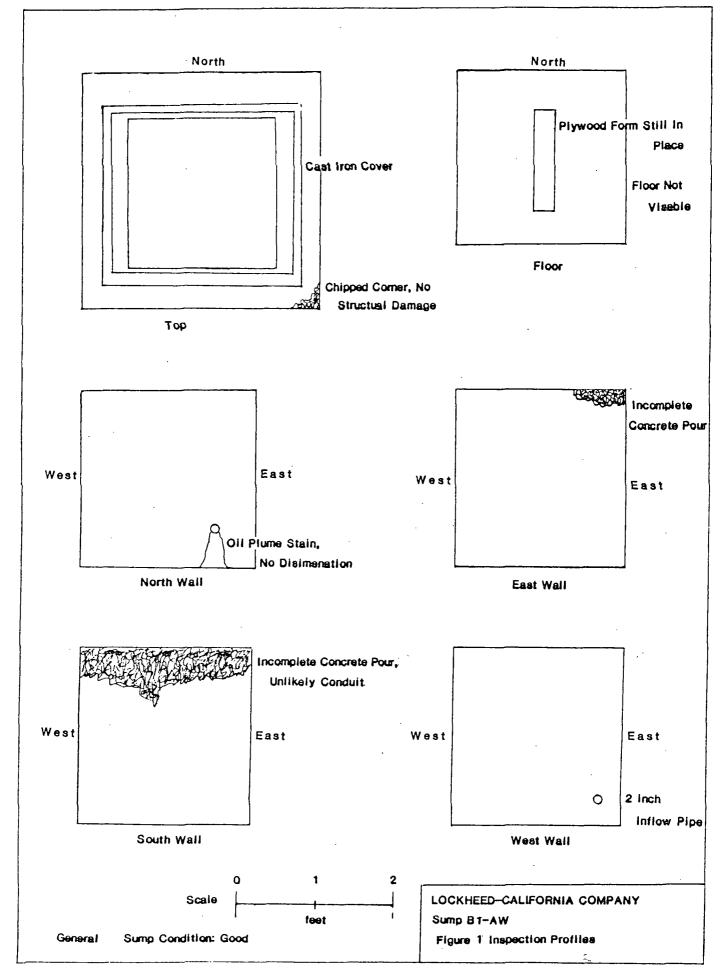
PARAMETER	BACK- GROUND SAMPLE	1	B-1-AM B2 16.5 ft.	B-1-AM B2 23.5 ft.	B-1-AM B2 30.5 ft.	B-1-AM B2 (DUP.) 30.5 ft.		B-1-AM B2 CDMPOSITE
Volatile Organics (ug/kg)	 	N.A.	 					N.T.
	1 <0.2	:	11.8	N.D.	57.9	55.0	63.5	
Ethyl Benzene	{ (0.1	:	N.D.	N.D.	43.3	35.2	47.4	
Chloroform	1 (0.1	1	209	3.2	46.1	56.2	55.4	
Chloromethane	(0.2	i	N.D.	N.D.	N.D.	N.D.	N.D.	
Chloroethane	(0.8	;	N.D.	N.D.	N.O.	N.D.	N.D.	
1,1-Dichloroethane	(0.1	:	N.D.	N.D.	N.D.	N.D.	N.D.	
1,2-Dichloroethane	(0.1	;	82.1	N.D.	42.2	35.3	49.3	
•	(⟨0.1	;	N.D.	N.D.	N.D.	N.D.	N.D.	
	1 (0.2	;	1140	6.4	1050	821	1150	•
• •	1 <0.1	}	N.D.	N.D.	N.D.	N.D.	N.D.	
• •	1 (0.1	;	N.D.	N.D.	N.D.	N.D.	N.D.	
•	1 <0.1		N.D.	N.D.	N.D.	N.D.	N.D.	
	1 (0.3	± 2,040 N		0.5	639	521	433	
	1 <0.4	,	N.D.	N.D.	N.D.	N.D.	N.D.	
Toiuene	(0.4	;	N.D.	N.D.	44.3	36.1	48.6	
Hexane	1 N.T.	į	N.T.	N.T.	N.T.	N.T.	н.Т.	
	1 N.T.	ļ	N.T.	N.T.	N.T.	N.T.	N.T.	
Methyl-3-Heptanone	N.T.	ļ	N.T.	N.T.	N.T.	N.T.	N.T.	
Petroleum Hydrocarbon (mg/kg) Dil & Grease (mg/kg)	(2.0 (N.T.	N.A. N.A.	N.T.	N.T. 7	N.T. ⟨2	N.T. N.T.	N.T. <2	N.T. N.T.
CAM Metals (mg/kg)	!		: N.T.	N.T.	N.T.	N.T.	N.T.	
Antimony	1 (2.5	500	1					⟨2.5
Arsenic	1 13.4	500						23.7
Barium	1 91.9	10,000	! !					94.5
Beryllium	1 (1.0	75						1.0
Cadaiua	1 (2.5	100		•				(0.5
Chromium (Total)	1 9.6	2,500						12.1
Cobalt	1 6.5	B,000						9.4
Copper	22.1	250 I						15.2
Lead	1 (2.5	1,000	}					(2.5
	1 (0,1	20						. (0.1
Molyodenu s	1 6.3	3,500	!					(1.0
Nickel	8.4	2,000	}					10.3
Selenium	1 (2.5	100	}					₹2.5
Silver	1 (2.5	500	1					₹2.5
Thallium	1 (2.5	700	<u> </u>					(2.5
Vanadius	1 22.0	2,400						30.7
linc	1 38.7	2,500						36.2
 Others	; !	 	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
pH (standard units)	8.24	N.A.						
Sodium (mg/kg)	. N.T.	N.A.						
	(0.2	N.A.						
Sulfate (mg/kg)	1 N.T.	N.A.						

N.A. - NOT AVAILABLE

N.D. - NOT DETECTED

N.T. - NOT TESTED

TTLE - TOTAL THRESHOLD LIMIT CONCENTRATION


r ang∕kg

LimiT		: 15 % 12 ft	20 8 40 44	F 37 55 V 37 12
;			a 40 10	- milateria un la
		: COMPOSITE	COMPOSITE	COMPOSITE
:		! !		
;		:		
0.94	N.A.	i h.l.	m. f.	ü.J.
1 0.09	N.Ä.	i N.T.	N.T.	N.D.
1 0.06	á.á.	i k.T.	N.T.	N.D.
0.08	N.Â.	i N.T.	N.T.	N.O.
i û.io	й.н.	: N.T.	N.T.	N.Ū.
0.10	N.A.	ŀ N.T.	à.T.	M.D.
. 0.05	k.A.	i N.T.	N.T.	ik. â.
: 0.03	N.s.	i k.I.	N.T.	N.Ū.
0.02	Ń.A.	i R.T.	a.I.	И.Д.
0.07	N.ň.			N.D.
				N.D.
	Ř.н.			N.D.
				N.D.
				ă.D.
				й. D.
				N. O.
				N.D.
				н. в. Н. д.
				N.D.
				ti.û.
				₩.D.
				N.D.
•				N.J.
				a.D.
	•			k. D.
0.05	N.n.	i N.T.	H.T.	N.Đ.
i		1		
1 6 Oa		i L i T	. •	9
				N.D.
				N.D.
		i N.t. 1	н. і.	N.D.
: 200.0	N.A.	N.T.	N.T.	N.D.
			N.T.	N.D.
1.0	il.s.	'۔۔۔۔۔ ز اور ا	e.4	9.ï.
;		:		
9.6**	2500	10.3	14.3	N. (.
1 2.5**	1000	N.T.	N.T.	N.T.
1 22.1**	25u	5.5		ħ.i.
				a.T.
	0.94 0.09 0.08 0.08 0.10 0.05 0.07 0.07 0.07 0.07 0.05	0.04 N.A. 0.05 N.A. 0.05 N.A. 0.07 N.A. 0.05 N.A. 0.05 N.A. 0.05 N.A. 0.07 N.A. 0.08 N.A. 0.08 N.A. 0.09 N.A.	0.04	0.04

^{· .} m:liigrams per kilogram (mg/kg)

^{**} Average Values Octained From Eackground Concentrations

R.A. -Not Available; N.D. -Not Detected; N.T. -Not Tested

One boring, which was converted to a suction lysimeter, was drilled/installed to assess conditions surrounding Clarifier B-1- AN.

BORING B-1-AN-B1/SUCTION LYSIMETER B-1-AN-SL1

Monitoring Installations - Boring B-l-AN-Bl/Suction Lysimeter B-l-AN-SLl was drilled/installed to monitor the clarifier as indicated in the approved Work Plan. the location of the boring/suction lysimeter is indicated on the site map.

Sampling Intervals - Soil samples from the boring/suction lysimeter were to have been collected at depths of 5, 12, 17, 25 and 40 feet according to the Work Plan. However, to expedite sampling procedures, samples were extracted from depths of 5, 10, 15, 25 and 40 feet. Based on the absence of any layers of low permeability in the upper portions of the soil horizons, and the losoe, highly conductive nature of the sands that predominate the lithology, it is unlikely that a slight variance in the sampled intervals will significantly alter the chemical profile of the soil.

<u>Field Observations</u> - The brown color and coarse grain size of the sand remained consistent throughout the first 25 feet of the boring. At 25 feet, the sand became a reddish color and finer grained. There was sufficient fine grained material present to make the soil slightly cohesive.

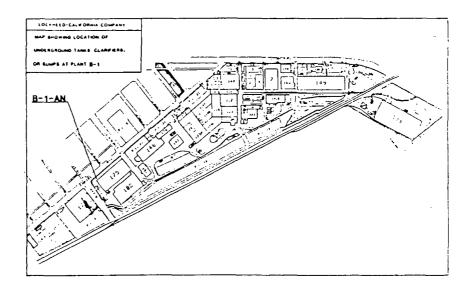
Indications of possible contamination were based upon observations of odor, color, moisture content, and soil consistency. There were no indications of contamination other than the reddish color at 25 feet.

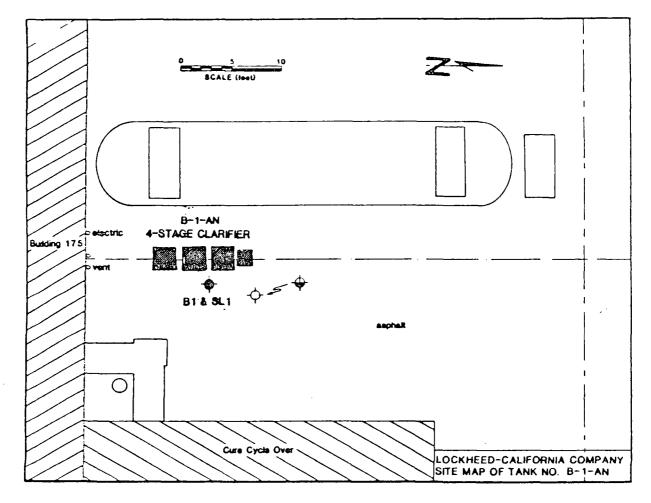
LABORATORY PROGRAM AND ANALYSIS

Laboratory Program - A liquid sample of the contents of Clarifier B-1-AN was collected and treated with nitric acid to maintain metals in soluble form for subsequent CAM metals analysis. A second liquid sample was collected and analyzed for volatile organic compounds and pH. Individual soil samples collected from Boring B-1-AN-Bl were composited and analyzed for volatile organics, CAM metals, pH, and cyanide. These analyses have been approved in the Work Plan.

Laboratory Analysis - The pertinent laboratory analysis results are summarized in Table B-1-AN. The concentrations of CAM metals in the treated liquid sample were found to be below the limits of detection or below the background levels. Volatile organic compounds were not detected in the untreated liquid sample and a neutral pH (7.25) was reported. The pH of the composite soil

TANK B-1-AN (continued)


sample was found to be near the level reported for the background samples. The concentrations of volatile organic compounds and cyanide were found to be below the limits of detection. Concentrations of beryllium, mercury, and molybdenum in the composited soil sample were found to be slightly above background levels (8.1, 0.4, and 16.7, respectively).


CONCLUSIONS

Based on field observations (no odor noted) and laboratory results, it is concluded that it is unlikely that Clarifier B-1-AN is leaking. The three metals reported to be above background concentrations in the soil sample (beryllium, mercury, and molybdenum) were at levels far below TTLC.

RECOMMENDATION

Proceed with quarterly monitoring of the suction lysimeter.

PERTINENT CONSTRUCTION AND PROGRAM DATA

Tank No.		
Plant No./Near		B-1/Bldg. 175 (N Side)
Tank:	Location	1705 Victory Place
	Installation Date	Unk
	Capacity, gal.	Unik
	Use/Process	Clarifier (4-stage)
	Contents (past,CAS No.,date);	UNK
	(present,CAS Mo.)	UHIA
	Construction Materials :	
	Geometry :	Rectangular
	Depth To Top :	LIHK
	Depth To Invert	Uni.
	Diameter	2.2 ft
	Leagth (1)	9.9 ft
	Containment	None
	Carrasire Protection (2)	UNK
	Status	In service
Tank Piping:	Number	Uhi.
	Туре	UNK
	Construction Mat.	Steel
Site:	Paving Material/Ihickness	
	Appearance	UNA
	Surface Contamination	LINK
Drilling	Rig Type/Requirements (3)	H.S.Auger
Prograe:	Borings (No.)	1
	;	B1/5,10,15,25,40 ft
	Vapor Wells/Lysimeters (No.)	
	Sample Depths	SLI/REF, TO WI
	Completion Interval	
Laboratory Pr	ogram (4) No. of Tank Content Samples	3
	Farameters	CAM,pH Vol.Org.
	No. of Tank Soul Samples	1(Comp.)
	Parameters	CAM,Cn,pH

					0000
	CONSTRUCTION DETAILS	DEPTH	LOG	BLOW CNTS	LITHOLOGIC DESCRIPTION
	CONSTRUCTION DETAILS	DEPTH - 0 2 4 6 8 10 12 14 16 18 20 22 24 -		8 45 49	LITHOLOGIC DESCRIPTION -Asphalt -Sand,coarse grain,brown, very loose,w/cobbles & gravel
<u> </u>	0	- 26 - - 28 - - 30 -	. d . o	41	-Silt,sandy,silt to coarse grain,red-brown, very moist,cohesive
	\$ 6	- 32 - - 34 - - 36 - - 38 -	0.0 a		,
		- 40 -		50+	
	COMPLETION & BACKFILL				

-Suction Lysimeter at 9 ft

-Blank 2-in I.D.

PVC pipe, 0-5 ft -Concrete, 0-4 ft

-Bentonite, 4-5 ft
-Clean sand & native mix,

6-10 ft

-Native material, caved

10-40 ft

TANK NO. B-1-AN

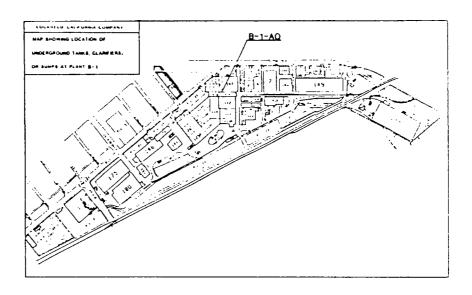
BORING NO. B-1-AN-B1

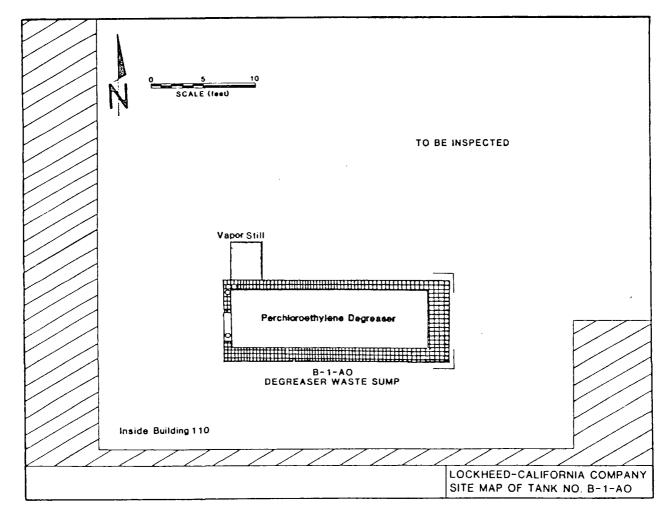
GREGG & ASSOCIATES, INC.

	BACK- GROUND SAMPLE		FIBBID	B-1-AN LIQUID UNTREATED	Bi
Volatile Organics (ug/kg)	; {	N.A.	. N.T.	N.D.	N.D.
	1 <0.2		i I		
Ethyl Benzene	1 (0.1		t t		
Chloroform	1 (0.1		l		
Chloromethane	1 (0.2		! •		
Chloroethane	: ⟨0.8		1		
1,1-Dichloroethane	(0.1		;		
	(0.1		1		
	1 (0.1		i T		
	1 (0.2		1 1		
- •	1 (0.1		;		
• •	1 <0.1		! !		
	1 (0.1		:		
	1 (0.1		! •		
•	1 (0.1		<u> </u>		
•		¥ 2,040	!		
	1 (0.4	'	1		
	1 (0.4		ł		
	1 <0.5		ŀ		
Petroleum Hydrocarbon (mg/kg) Dil & Grease (mg/kg)	: <2.0 : N.T.		N.T.		N.T. N.T.
 CAM Metals (mg/kg)	: :		; ;	N.T.	
	1 (2.5	500	(0.005		⟨2,5
	1 13.4	500	(0.005		10.8
	1 91.9		(0.01		62.8
	1 (1.0	•	(0.02		8.1
			{0.001	-	(ύ . 5
	1 9.6		(0.01		7.9
	1 6.5	•	(0.02		8.1
	22.1		(0.02		10.2
	1 (2.5		1 0.009		(2.5
	1 (0.1		(0.000	5	0.4
· ·	1 6.3		(0.02		16.7
•	6.4	•	(0.01		7.1
	1 <2.5		(0.005		(2.5
	1 (2.5		(0.05		(2.5
	1 (2.5		(0.005		(2.5
	22.0		(0.01		26.0
	1 38.7	•	0.16		25.9
Zinc			{		
Zinc	}		! N.T.		
Zinc Others	!		. N.T.	7.25	ğ ig
Zinc Others pri (standard units)	8.24	N.A.	. N.T. !	7.25 N T	8.18 N T
Zinc Others pri (standard units) Sodium (mg/kg)	!	N.A.		7.25 N.T. N.T.	8.18 N.T. <0.2

N.A. - NOT AVAILABLE

N.D. - NOT DETECTED


N.T. - NOT TESTED


TTLC - TOTAL THRESHOLD LIMIT CONCENTRATION

[±] ma/ka

TANK B-1-AO

As proposed in the Work Plan, the integrity of Sump B-1-AO was to have been determined by visual inspection. However, further discussion with CALAC personnel and Mr. Al Novak of the RWQCB resulted in the decision that a soil boring, soil analysis, and installation of a vapor monitoring well would provide more thorough information. Therefore, the sump will be investigated using one, 20-foot soil boring which will be converted to a 10-foot vapor monitoring well. Soil samples will be taken from the boring at 10 and 20 feet. The results of the field investigation and laboratory analysis of the samples will be added to this report when completed and available.

lank No.	1	B-1-AG
Plant No./Near	est Blag.	B-1/Bldg. 110 (Inside)
·		1705 Victory Place
	Installation Date	Unk
	Capacity, gal.	Ühx
	Use/Process :	Degreaser waste sump
	; :	
	Contents (past,£AS Mo.,qate);	Perchiarethylene 127194
	(present,CAS Mo.)	Perchlorethylene 127194
	Construction Materials	Concrete
	Beometry	Rectangular
	Depth To Top	
	Depth la Invert	UNIK
	Diameter	UNK
	Length (1)	UH k
	Containment	None
	Corrosive Protection (2)	UNIX
	Status	In service
Tank Piping:	Nuaper	UNA
	Туре	LINK
	Construction Mat.	Steel
51te:	Faving Material/Thickness (
	Appearance	UNK
	Surface Contamination	
Drilling	Rig Type/Requirements (3)	Inspection
Frogram:	Barings (No.)	0
	Sample Depths	
	Vapor Mells/Lysimeters (No.);	0
	Sample Depths	
	Sample Depths	
	Completion Interval	
Laboratory Pro	ogram (4)	
	No. of Tank Content Samples Farameters	
	No. of lank Soil Samples	
	Parameters	:

FIELD PROGRAM

One boring, which was converted to a suction lysimeter, was drilled/installed to assess conditions surrounding Clarifier B-1-AP.

BORING B-1-AP-B1/SUCTION LYSIMETER B-1-AP-SL1

Monitoring Installations - Boring B-l-AP-Bl/Suction Lysimeter B-l-AP-SLl was drilled slightly south of the approved location due to interference from an underground pipe. Two attempts were made to drill the boring/suction lysimeter to the planned depth. A steel pipe 2 feet below ground surface prevented successful completion of the first attempt. The second attempt reached a successful depth of 40 feet. Both the actual and approved locations of the boring/suction lysimeter are indicated on the site map.

Sampling Intervals - Soil samples from the boring/suction lysimeter were to have been collected at depths of 5, 12, 17, 25 and 40 feet according to the Work Plan. However, in order to expedite the procedure, samples were extracted from depths of 5, 10, 15, 25 and 40 feet. Based on the absence of any layers of low permeability in the upper portions of the soil horizons, and the loose, highly conductive nature of the sands that predominate the lithology, it is unlikely that a slight variance in the sampled intervals will significantly alter the chemical profile of the soil.

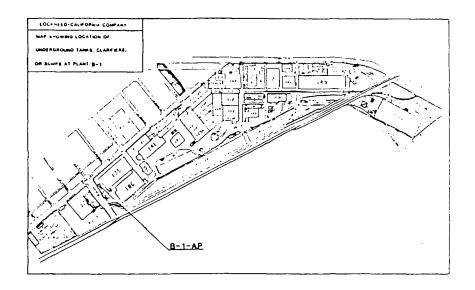
<u>Field Observations</u> - The fine to coarse grain size of the sand remained consistent throughout the first 15 feet of the boring. At 15 feet, the sand became coarser and lighter in color.

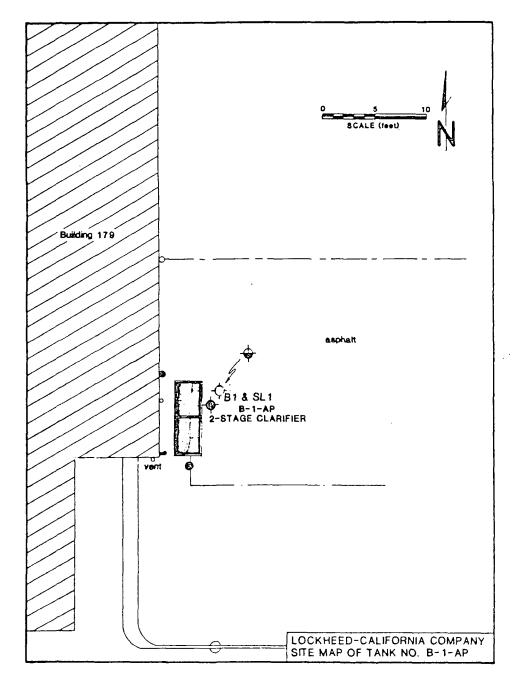
Indications of possible contamination were based upon observations of odor, color, moisture content, and soil consistency. There were no indications of contamination.

LABORATORY PROGRAM AND ANALYSIS

Laboratory Program - A liquid sample was collected from Clarifier B-1-AP and treated with nitric acid to maintain metals in soluble form for subsequent CAM metals analysis. A second liquid sample was collected and analyzed for volatile organic compounds and pH. Individual depth soil samples were collected from Boring B-1-AP-B1 and composited for analysis of volatile organics, CAM metals, cyanide, and pH. These analyses have been approved in the work plan.

Laboratory Analysis - The pertinent laboratory analysis results are summarized in Table B-1-AP. A concentration of 5.5 mg/kg of lead was found in the treated liquid samples. All other metals were found to be at concentrations below the limits of detection


or near the levels reported for the background samples. The concentrations of volatile organic compounds were reported to be below the limits of detection in the untreated liquid sample. The concentrations of Volatile organics, CAM metals (except molybdenum), and cyanide in the composite soil sample from Boring B-1-AP were found to be below the limits of detection or near the levels reported for the background samples. A moderate level of molybdenum (13.5 mg/kg) was reported for the B-1-AP-Bl composite sample.


CONCLUSIONS

Based on the field observations and laboratory analysis results, it is concluded that Clarifier B-1-AP is not leaking. The moderate level of molybdenum reported for the B-1 composite sample is probably a natural level for the soil (the 30 foot background sample contained 12.4 mg/kg of molybdenum).

RECOMMENDATION

Proceed with quarterly sampling of the suction lysimeter.

PERTINENT CONSTRUCTION AND PROGRAM DATA

Tank No.		B-1-AP
Plant No./Ne		6-1/81ag. 179 (E Side)
Tank:	Location	1705 Victory Place
	Installation Date	UHK
	Capacity, gal.	Uhk
	Use/Process :	Clarifier (2-stage)
	:	
	Contents (past,CAS No.,date):	UNA
	!	
	(present,EAS No.)	UNA.
	(present,EAS No.)	UAK .
	į	
	Construction Materials	Concrete
	Geometry	Rectangular
	Depth To Top	Uhr
	Depth To Invert	FINK
	Diameter	2.2 ft
	Length (1)	6.8 ft
	Containment	None
	Carrosive Protection (2)	UNK
	Status	
T 6		In service
Tank Piping:		; UALL
	Туре	l ¦ ber
	Construction Nat.	Steel
Site:	Paving Material/Thickness	Asphalt
		UNK
		<u> </u>
	Surface Contamination	UNX
Orilling	Rig Type/Requirements (3)	H.S. Auger
Program:	Borings (No.)	
	Saena Aenths	B1/5,10,15,30,40 ft
	Sample Septins	
	Vapor Hells/Lystmeters (No.)	' 1
	Sample Depths	SLI/REF. TO BI
	Completion Interval	SL1/9 +t
Laboratory f	roorae (4)	
	No. Of Tank Content Samples	3
	Parameters	CAM,pH Vol.Org.
	Mo. of Tank Soil Samples	(
	Parameters	Car Car
	L St. SHECKL 2	CAM,Cn,pH Vol.Org.

				V O O O
CONSTRUCTION DETAILS	DEPTH	LOG	BLOW CNTS	LITHOLOGIC DESCRIPTION
CONSTRUCTION DETAILS	DEPTH - 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 -		15	
	- 34 -	O		
6	- 36 -	Ø 🔿		
	- 38 - - 40 -	Ø	50+	
COMPLETION & BACKFILL		n die en de en de en de en de e	•	
1				

-Suction Lysimeter at 9 ft -Blank 2-in I.D. PVC pipe, 0-5 ft
-Concrete, 0-4 ft
-Bentonite, 4-5 ft
-Clean sand, 5-6 ft
-Clean sand & native

mix, 6-10 ft -Native material, caved

10-40 ft

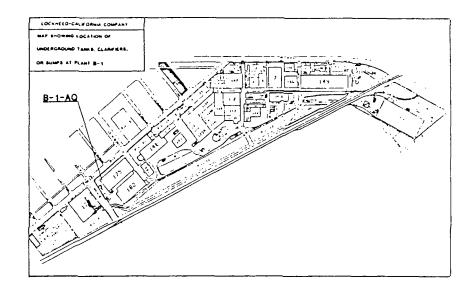
TANK NO. B-1-AP

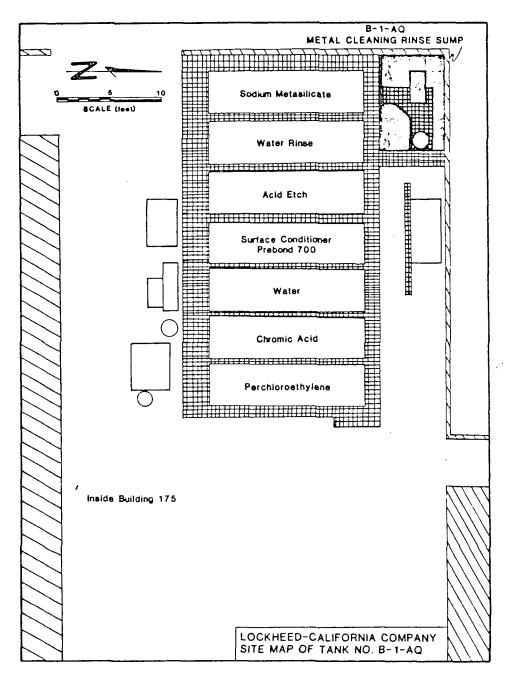
BORING NO. B-1-AP-B1

GREGG & ASSOCIATES, INC.

	BACK- GROUND SAMPLE		: LIQUID	B-1-AP LIQUID Untreated	B-1-AP B1 COMFOSITE
Volatile Organics (ug/kg)	; ;	N.A.	N.T.	N.O.	N.D.
•	(0.2		1 		
Ethyl Benzene	(0.1		(;		
•	(0.1		}		
	1 (0.2		ļ		
Chloroethane	1 (0.8		1		
1,1-Dichloroethane	(0.1		;		
1,2-Dichloroethane	! <0.1		}		
•	1 (0.1		i .		
· · · · · · · · · · · · · · · · · · ·	1 (0.2		;		
• •	(0.1		1		
, ,	l <0.1		1		
Dibromochloromethane	: <0.1		1		
1,1-Dichloroethene	: <0.1		<u> </u>		
•	1 (0.1		:		
	1 <0.3	± 2,040	1		
Tetrachloroethene	1 (0.4	•	1		
	(0.4		;		
Methyl Ethyl Ketone	1 (0.5		!		
Petroleum Hydrocarbon (mg/kg)	1 (2.0	N.A.	: : N.T.	N.T.	N.T.
	1 N.T.		. N.T.	N.T.	N.T.
CAM Metals (mg/kg)			;	N.T.	
, , , , , , , , , , , , , , , , , , ,	(2.5	500	1 (0.005		(2.5
Arsenic	13.4	500	1 (0.005		9.5
Barium	1 91.9	10,000	1 (0.01		60.1
Beryllium	1 <1.0	75	(0.02		1.2
•	(2.5		1 (0.001		₹0.05
Chromium (Total)	9.6	2,500	(0.01		9.6
Cobalt	1 6.5	8,000	(0.02		6.9
_	22.1	,	0.03		10.8
Copper					
• •	1 <2.5	1,000	: 5.5		(2.5
Lead	<2.5 <0.1	•	: 5.5 : <0.0005	i	(2 .5 (0.1
Lead Mercury		20		i	(0.1
Lead Mercury	(0.1	20 3,500	: <0.0005	i	
Lead Mercury Molybdenus Nickel	1 (0.1	20 3,500 2,000	: <0.0005 : <0.02	i	(0.1 13.5
Lead Mercury Molybdenum Nickel Selenium	(0.1 6.3 8.4	20 3,500 2,000	(0.0005 (0.02 (0.01	i	(0.1 13.5 7.4
Lead Mercury Molybdenus Nickel Selenius Silver	! (0.1 ! 6.3 ! 8.4 ! (2.5	20 3,500 2,000 100	(0.0005 (0.02 (0.01 (0.005	i	(0.1 13.5 7.4 (2.5
Lead Mercury Molybdenum Nickel Selenium Silver Thallium	(0.1 6.3 8.4 (2.5 (2.5	20 3,500 2,000 100 500 700	(0.0005 (0.02 (0.01 (0.005 (0.05 (0.05	i	(0.1 13.5 7.4 (2.5 (2.5 (2.5
Lead Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium	! (0.1 ! 6.3 ! 8.4 ! (2.5 ! (2.5	20 3,500 2,000 100 500 700 2,400	(0.0005 (0.02 (0.01 (0.005 (0.05	i	(0.1 13.5 7.4 (2.5 (2.5
Lead Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium	! (0.1 ! 6.3 ! 8.4 ! (2.5 ! (2.5 ! (2.5 ! (2.5	20 3,500 2,000 100 500 700 2,400	(0.0005 (0.02) (0.01) (0.005) (0.05) (0.005) (0.01) (0.01)		(0.1 13.5 7.4 (2.5 (2.5 (2.5 24.5
Lead Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Linc	(0.1 6.3 8.4 (2.5 (2.5 (2.5 22.0 38.7 	20 3,500 2,000 100 500 700 2,400 2,500	(0.0005 (0.02 (0.01 (0.005 (0.05 (0.005 (0.01 (2.34 ((0.1 13.5 7.4 (2.5 (2.5 (2.5 (2.5 24.5 27.3
Lead Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Linc Others pH (standard units)	(0.1 6.3 8.4 (2.5 (2.5 (2.5 22.0 38.7	20 3,500 2,000 100 500 700 2,400 2,500	(0.0005 (0.02) (0.01) (0.005) (0.05) (0.005) (0.01) (0.01)	7.45	(0.1 13.5 7.4 (2.5 (2.5 (2.5 24.5 27.3
Lead Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Linc Others pH (standard units) Sodium (mg/kg)	(0.1 6.3 8.4 (2.5 (2.5 (2.5 22.0 38.7 	20 3,500 2,000 100 500 700 2,400 2,500	(0.0005 (0.02 (0.01 (0.005 (0.05 (0.005 (0.01 (2.34 ((0.1 13.5 7.4 (2.5 (2.5 (2.5 (2.5 24.5 27.3

N.A. - NOT AVAILABLE

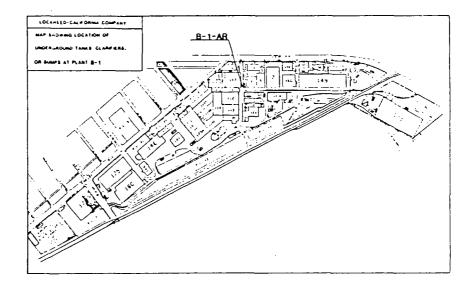

N.D. - NOT BETECTED

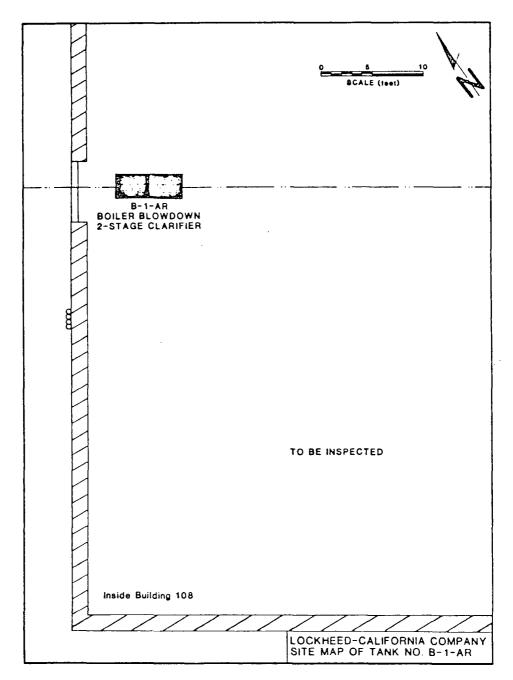

N.T. - NOT TESTED

TILE - TOTAL THRESHOLD LIMIT CONCENTRATION

TANK B-1-AQ

As proposed in the Work Plan, the integrity of Sump B-1-AQ was to have been determined by visual inspection. However, further discussion with CALAC personnel and Mr. Al Novak of the RWQCB resulted in the decision that a soil boring, soil analysis, and installation of a vapor monitoring well would provide more thorough information. Therefore, the sump will be investigated using one, 20-foot soil boring which will be converted to a 10-foot vapor monitoring well. Soil samples will be taken from the boring at 10 and 20 feet. The results of the field investigation and laboratory analysis of the samples will be added to this report when completed and available.

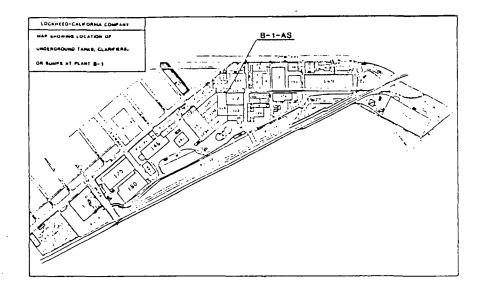


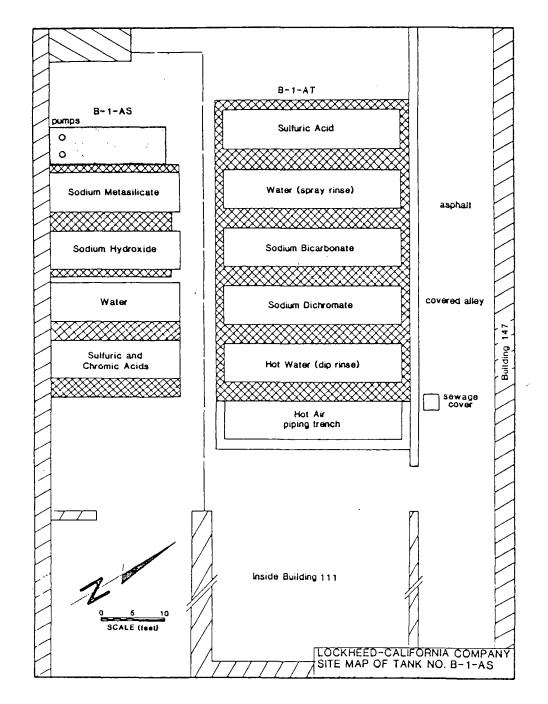


lank Mo.		
Plant No./Hears	est Bidg.	8-1/810g. 1/3 (1nside/
lank:	Location	1705 Victory Flace
	Installation Date	UHA
	Capacity, gal.	üki
	Use/Process	Metal cleaning rinse sump
	Contents (past,CAS Mo.,date)	UNK
	(present _y CAS No.)	Metal cleaning rinse
		water :
		Concrete Square
		·
	Depth To Top	LINK
	Depth To Invert	UNK
	Diameter	UNK
	Length (1)	LINA
	Containment	i None
		' ! UNK
	Status	In service
Tank Piping:	Musber -	; UNA
	Түре	LUNK
	Construction Nat.	i Steel
Site:	Paving Material/Thickness	
	Appearance	! Limb
		; UNIL
Drilling	Rig Type/Requirements (3)	: Portable H.S.Auger
Program:	Barings (No.)	! :
	Sample Depths	1 61/10,20 ft ;
	Vapor Wells/Lysimeters (No.)	0
	Sample Depths	<u></u>
	Completion laterval	}
Laboratory Pro	gram (4) No. of Tank Content Samples	: : 6
	Parameters	:
	No. of Tank Soil Samples	I(Comp.)

TANK B-1-AR

As proposed in the Work Plan, the integrity of Clarifier B-1-AR was to have been determined by visual inspection. However, further discussion with CALAC personnel and Mr. Al Novak of the RWQCB resulted in the decision that installation of a suction lysimeter would provide more thorough information. Therefore, the clarifier will be investigated using one, 20-foot soil boring which will be converted to a 10-foot suction lysimeter. Soil samples will be taken from the boring at 8 and 20 feet. The results of the field investigation and laboratory analysis of the samples will be added to this report when completed and available.

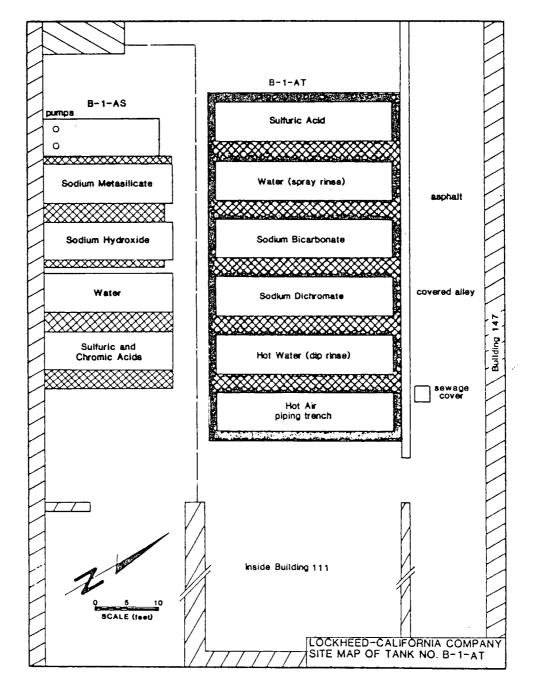




Tank No.		B-1-AR
Flant No./Mears	est Bldg.	B-1/61dg. 108 (Inside)
Tank:	Location	1705 Victory Place
	Installation Date	UNA
	Capacity, gal.	Uhx
		Boller blowdown clarifier (2-stage)
	Contents (past,CAS No.,date)	UNK
	!	
	(present,CAS Mo.)	Poss. sultides
	Construction Materials	Concrete
	Depth To Top	ÙNA
	Depth To Invert	Unix
	Diameter	2.3 ft
	Length (1)	ii it
	Containment	Kone
	Corrosive Protection (2)	! Unk
	Status	In service
Tank Piping:	Number	UNK
	Туре	: Unk
	Construction Mat.	Steei .
Siter	Paving Material/Thickness	: Concrete
	Appearance	Liber.
	Surface Contamination	·
Drilling Program:	Rig Type/Requirements (3)	Inspection
rrogram:	Borings (No.)	[
	Sample Depths	! !
	Vapor Helis/Lysimeters (No.)	; ; 0
	Sample Depths	; ; ;
	Completion Interval	; ; ;
Laboratory Pro	gram (4) No. of Tank Content Samples	
	Parameters	:
	No. of Tank Soil Samples	0
	Parameters	! !
		!

TANK B-1-AS

As proposed in the Work Plan, the integrity of Overspill Containment Facility B-1-AS was to have been determined by visual inspection. However, further discussion with CALAC personnel and Mr. Al Novak of the RWQCB resulted in the decision that soil analysis and a permanent monitoring installation would provide more thorough information. Therefore, Containment B-1-AS and adjacent Containment B-1-AT will be investigated using one, 20-foot boring which will be converted to a 10-foot suction lysimeter. The results of the field investigation and laboratory analysis of the samples will be added to this report when completed and available.



Plant No./Nearest Bldg.		B-1/Bidg. 111 (inside)
ankt	Location	1705 Victory Place
	Installation Date	URK
	Capacity, gal.	
	Use/Process :	Metal cleaning rinse Sump
	Contents (past,CAS No.,date);	UNK
	(present,CAS No.)	Metal cleaning rinse water
	Construction Materials	Concrete
	Geometry	Rectangular
	Pepta To Top	UNK
		UNK
	Diaseter	5.9 ft
		18 ft
	Length (1)	
	Containment	Hone
	Corrosive Protection (2)	UNK
	Status	in service
Tank Fiping:		UNK
	Гуре	UNK
	Construction Mat.	Steel
Site:	Paving Material/Thickness	Concrete
	Appearance	i Jnk
	Surface Contamination	: DHK
Orilling Program:	Rig Type/Requirements (3)	Portable H.S.Auger
	Barings (No.)	
	Sample Depths	81/10,20 ft
	Vapor Wells/Lystaeters (No.)	0
	Sample Depths	
Laboratory P	rogram (4) No. of Tank Content Samples)
	Parameters	
	No. of Tank Soul Samples	
	Parameters	: : Се,рн
		; {

TANK B-1-AT

As proposed in the Work Plan, the integrity of Overspill Containment Facility B-1-AT was to have been determined by visual inspection. However, further discussion with CALAC personnel and Mr. Al Novak of the RWQCB resulted in the decision that soil analysis and a permanent monitoring installation would provide more thorough information. Therefore, Containment B-1-AT and adjacent Containment B-1-AS will be investigated using one, 20-foot boring which will be converted to a 10-foot suction lysimeter. The results of the field investigation and laboratory analysis of the samples will be added to this report when completed and available.

Tank No.	; \	8-1-AT
Plant No./Near	est Bldg.	8-1/Bldg. 111 ([nside)
Tank:	Location	1705 Victory Place
	InstallutSite	UNK
	Capacity, gal.	UNK
	Use/Process	Metal cleaning rinse sump
	Contents (past,CAS Mo.,date)	UNK
	(present,CAS No.)	Metal cleaning rinse water
	Construction Materials	Concrete
	Geometry	Square
	Depth To Top	UNK
	Depth To Invert	UNK
	Diameter	UNK
	Length (1)	UNK
	Containment	None
	Corrosive Protection (2)	UNK
	Status	In service
Tank Piping:	Nuetr	UNK
	Туре	UNK
	Construction Hat.	Steel
Site:	Paving Material/Thickness	Concrete
	Appearance	UNK
	Surface Contamination	UNK
Drilling	Rig Type/Requirements (3)	Portable H.S.Auger
Program:	Borings (No.)	1
		81/10,20 ft
	Sample Depths	
	Completion Interval	1
Laboratory Pr		
	No. of Tank Content Samples	
	Parameters	
	No. of Tank Soil Samples Parameters	1(Caeg.)

FIELD PROGRAM

Two borings, both of which were converted to vapor monitoring wells, were drilled to assess conditions surrounding Tank B-l-AU.

BORING B-1-AU-B1/SUCTION LYSIMETER B-1-AU-SL1

Monitoring Installations - Boring B-l-AU-Bl/Vapor Monitoring Well B-l-U-MVl was drilled/installed to monitor the waste oil tank as indicated in the approved Work Plan. The location of the boring/vapor monitoring well is indicated on the site map.

Sampling Intervals - Soil samples from the Boring/Vapor Monitoring Well were to have been collected a depths of 7, 17, 22, 30 and 40 feet according to the Work Plan. However, to expedite the procedures, samples were extracted from depths of 5, 10, 22, 32 and 40 feet. Based on the absence of any layers of low permeability in the upper portions of the soil horizons, and the loose, highly conductive nature of the sands that predominate the lithology, it is unlikely that a slight variance in the sampled intervals will significantly alter the chemical concentration profile of the soil.

<u>Field Observations</u> - The brown color and medium grain size of the sand remained consistent throughout the entire boring. The frequency of cobbles increased at 12 feet and continued to 25 feet.

Indications of possible contamination were based upon observations of odor, color, moisture content, and soil consistency. There were no indications of contamination.

BORING B-1-AU-B1/VAPOR MONITORING WELL B-1-AU-MV1

Monitoring Installations - In the original Work Plan, a boring and a separate vapor monitor well were approved to monitor at the north end of the tank. However, to expedite drilling, the well was placed in the boring upon completion of that facility. Well B-1-AU-MV2 was installed to monitor the waste oil tank as indicated on the site map.

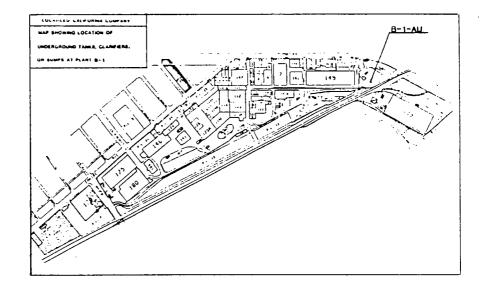
<u>Sampling Intervals</u> - Soil samples were taken from the boring/vapor monitoring well at depths of 5, 10, 22, 32 and 40 feet.

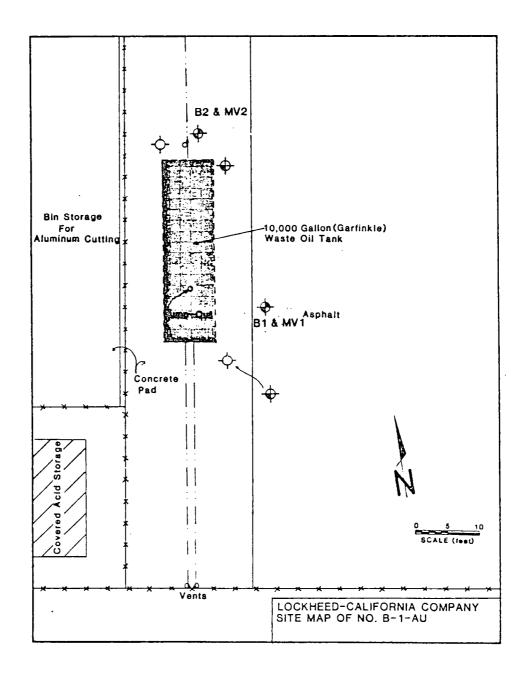
Field Observations - The brown color and medium grain size of the sand remained consistent throughout the first 28 feet of the boring. At 28 feet, the color of the sand became slightly lighter brown and the gravel and cobble fraction increased.

There were no indications of contamination other than a very slight odor at 18 feet. The origin of the odor was not clear.

LABORATORY PROGRAM AND ANALYSIS

Laboratory Program - A liquid sample of the contents of Tank B-1-AU was collected and treated with nitric acid to maintain the metals in soluble for for subsequent CAM metals analysis. A second liquid sample was collected and analyzed for volatile organics and oil and grease. Individual soil samples from Boring B-1-AU-Bl were collected and analyzed for oil and grease. A composite of the individual soil samples collected from Boring B-1-AU-B2 was analyzed for volatile organics, petroleum hydrocarbons, and oil and grease.


<u>Laboratory Analysis</u> - The pertinent laboratory analysis results are summarized in Table B-1-AU. The concentrations of CAM metals in the treated sample were found to be below the limits detection or below the concentrations reported for the background samples. The untreated liquid sample was reported to ug/kg trans-1,2 dichloroethene, trichloroethene, 35.2 ug/kg tetrachloroethene, and 254 mg/kg oil The individual-depth soil samples from Boring B-1and grease. AU-Bl were found to contain concentrations of oil and grease that are below the limits of detection. A moderate concentration of (13.2)ug/kg) was reported for (composite) soil sample. All other volatile organic compounds were found to be below the limits of detection. Since chloroform was not detected in the liquid sample, it is likely that the chloroform found in the B2 soil sample is due to surface spills.


CONCLUSIONS

Based on field observations (slight odor), and laboratory analyses, it is concluded that Tank B-l-AU is not leaking. The moderate level of chloroform contamination found in the B-l-AU-B2 composite soil sample is likely due to surface spills.

RECOMMENDATION

Additional analyses on depth-specific samples is required to identify the source and extent of chloroform contamination around Tank B-1-AU.

Tank No.	· · · · · · · · · · · · · · · · · · ·	B-1-AU		
Plant No./Near	est Bldg.	B-1/81dg. 194 (S Side)		
Tank:	Location	1705 Victory Place		
	Installation Date	1980		
	Capacity, gal.	10,000		
		Stores cutting oils from		
		alumsnum chips		
	Contents (past,CAS No.,date)	Tramp cutting oils		
	(present,CAS No.)	Tramp cutting oils		
	tpresentions not	i i i i i i i i i i i i i i i i i i i		
	Construction Materials	Steel		
	Geometry	Cylindrical		
	Depth To Top	UNK		
	Depth To Invert	UNK		
	Diaseter	8 ft		
	Length (1)	27 ft		
	Containment	Kane		
	Carrosive Protection (2)	LINK		
	Status	i in Service		
Tank Pipings	Number	!		
	Туре			
		ÜNK		
	Construction Hat.	UNK		
Site:	Paving Material/Thickness	Concrete		
	Appearance	UNK		
	Surface Euntamination) WANK		
Drilling	Rig Type/Requirements (3)	H.S. Auger		
Program:	Rig Type/Requirements (3) Borings (No.)	2		
	Sample Depths	B1/5,10,22,32,40 ft B2/5,10,22,32		

	Vapor Wells/Lysimeters (No.)	!		
	Sample Depths	MV1/REF. TO 81 MV2/REF. TO 82		
		,		
	Completion Interval	: MV1/8-17.5 ft ft : MV2/8-17.8 ft		
		1		
Laboratory Pr	ogram (4) No. of Tank Content Samples	! : : 3		
		: LAM, VOI. Urg : Hydrocarbons		
		5 & 1(Comp.)		
	Parameters	Hydrocarbons		
		Hydrocarbons Vol.Urg.		

	CONSTRUCTION DETAILS	DEPTH	LOG	BLOW	LITHOLOGIC DESCRIPTION	
	TOTAL PROPERTY.	- 0 -	スペッとペッ		-Asphalt -Sand,fine to medium	
	(1) T. A. (1) T.	- 4 -	O		grain,brown,moist, occasional cobbles	
		- 6 -	ø	20		
		- 8 -	đ			
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	- 10 -	0	25		
		- 12 -		ļ		
	August 1	- 14 -	0	İ		
		- 16 -	0			
		- 18 -	O		·	
i	50	- 20 -	B		-Cobbles	
	0	- 22 -	0	30	-Odor	
		- 24 -	ß			
		- 26 -	00			
		- 28 -	0		-Slight color change, lighter	
	2	- 30 -	0		righter	
		- 32 -	S	50+		
i	(2) (2)	- 34 -	b	<u> </u>		
	(A)	- 36 -	0			
	4	- 38 -	đ		,	
		- 40 -	9	45		
	COMPLETION & BACKFILL					
	-Blank 2-in I.D. PVC pipe, 0-8 ft					
	-Screened 2-in I.D. PVC pipe, 8-17.5 ft -Concrete, 0-4 ft	1AT	NK NO.	. <u>B-</u>	<u>1-AU</u>	
	-Bentonite, 4-5 ft -Clean sand, 5-20 ft -Native material, caved	Bentonite, 4-5 ft Clean sand, 5-20 ft PODING NO B-1-ALI-R1				

GREGG & ASSOCIATES, INC.

	CONSTRUCTION DETAILS	DEPTH	LOG	BLOW CNTS	LITHOLOGIC DESCRIPTION
		- 0 - - 2 -	の今でよう		-Asphalt -Sand, medium grain, brown, moist
		- 4 -			
		- 6 -		12	
		- 8 -			
		- 10 -		15	
		- 12 -	00		-Cobbles
		- 14 - - 16 -	0 0		
		- 18 -	0		
	20	- 20 -			·
	0	- 22 -	0 0 0	30	
		- 24 -	O O	ì	-Decreasing cobbles
\bigcup		- 26 -	0		
		- 28 -	0		·
		- 30 -	o	501-	
	5	- 32 - - 34 -		50+	
	4	- 36 -			
		- 38 -			•
		- 40 -			
	COMPLETION & BACKFILL		<u> </u>	4	• • • • • • • • • • • • • • • • • • •
	-Blank 2-in I.D.				

PVC pipe, 0-8 ft -Screened 2-in I.D. PVC pipe, 8-17.8 ft -Concrete, 0-4 ft

-Bentonite, 4-5 ft -Clean sand, 5-18 ft

-Native material, caved 18-32 ft

TANK NO. B-1-AU

BORING NO. B-1-AU-B2

GREGG & ASSOCIATES, INC.

PARAMETER	: BACK- : GROUND : SAMPLE		B-1-AU LIQUID TREATED		Bi 5 ft.	B1 10 ft.	B-1-AU B1 22 ft.		B-1-AU B2 COMPOSITE
Volatile Organics (ug/kg)	· }	N.A.	: N.T.		N.T.	N.T.	N.T.	N.T.	
Benzene	1 (0.2		1	N.D.		.,			N.D.
Ethyl Benzene	1 (0.1		1	N.D.					N.D.
Chloroform	⟨0.1		ŧ	N.D.					13.2
Chloromethane	1 (0.2		1	N.D.					N.D.
Chloroethane	1 (0.8		!	N.D.					N.D.
1,1-Dichloroethane	1 (0.1		1	N.D.					N.D.
1,2-Dichloroethane	1 ⟨0.1		1	N.D.					N.D.
1,2-Dichloropropane	1 (0.1		l I	N.D.					N.D.
1,1,1-Trichlorethane	(0.2		1	N.D.					N.D.
1,1,2-Trichloroethane	1 (0.1		t	N.D.					N.D.
Bromodichloromethane	: <0.1		ŀ	N.D.					N.D.
Dibromochloromethane	1 (0.1		i i	N.D.					N.D.
1,1-Dichlaraethene	1 (0.1		t	N.D.					N.D.
trans-1,2-Dichloroethene	1 (0.1		1	741					N.D.
Trichloroethene	1 (0.3	± 2,040	:	44.8					N.D.
Tetrachloroethene	1 (0.4	-1		35.2					H.D.
Toluene	1 (0.4		1	N.D.					N.D.
Methyl Ethyl Ketone	1 (0.5		1	N.D.					N.D.
Petroleum Hydrocarbon (mg/kg) Oil & Brease (mg/kg)	{2.0 N.T.	N.A. N.A.	N.T.	N.T. 254	N.T. (1.0	N.⊺. ⟨1.0	N.T. (1.0	н.т. <1.0	3.3 3.9
	-								
CAM Hetals (mg/kg)	1		ŀ	N.T.	N.T.	N.T.	N.T.	N.T.	н.Т.
Anti∎ony	1 (2.5	500	(0.25						
Arsenic	1 13.4	500	1 ⟨0.25						
Bariwa	1 91.9	10,000	(0.05						
Beryllium	1 <1.0	75	₹ ⟨0.1						
Cadmium	1 (2.5	100	1 (0.05	**					
Chromium (Total)	1 9.6	2,500	1 5.8						
Cobalt	1 6.5	B,000	(0.1						
Copper	22.1	250	0.2						
Lead 	1 (2.5	1,000	(0.25	-				,	
Mercury	(0.1	20	(0.000	Ď.					
Molyadenum	1 6.3	3,500	(0.1						
Nickel Colorina	1 8.4	2,000	0.1						
Selenium	1 (2.5	100	(0.25						
Silver	1 (2.5	500 700	(0.25						
Thailium	1 (2.5		(0.05						
Vanadium Zinc	1 38.7	2,400 2,500	1.2						
Others	- !		 N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.
pH istandard units)	1 8.24	N.A.	. N. I.	14 . 4	N. I.	n.i.	п. Г.	п. Г.	14.1.
Sodium (mg/kg)	1 N.T.	N.A.	• !						
Cyanide (mg/kg)	(0.2	N.A.	1 1						

N.A. - NOT AVAILABLE

N.D. - NOT DETECTED

N.T. - NOT TESTED

TANK NUMBER B-1-AW

One boring, which upon completion was converted to a vapor monitoring well, B-l-AW-Bl/MVl, was drilled/installed to monitor subsurface conditions at Sump B-l-AW. A visual inspection of Sump B-l-AW was also conducted. This small square waste oil sump was not included in the original Underground Tank Leak Detection Report for Plant B-l. The sump was obscured by movable equipment during the initial field location activity and was just recently exposed. The sump, although of smaller capacity, is similar to both B-l-J and B-l-AM facilities in both proximity and use.

FIELD PROGRAM

VAPOR MONITORING WELL B-1-AW-B1/MV1

Monitoring Installation - Boring/Vapor Monitoring Well B-1-AW-B1/MV1, was drilled/installed to a depth of 40 feet and is located about 18 inches from the south east corner of the sump as indicated on the site map.

<u>Sampling Intervals</u> - Soil samples were collected from depths of 5, 12, 22 and 40 feet.

Field Observations - The soil consisted of a loose, soft greyish brown, medium sand to a depth of 15 feet. At 15 feet the soil became slightly more brown in color; the soil became darker brown at 21 feet and finally multicolored at 26 feet. Upon completion of sampling, a 20-foot vapor monitoring well with machine slots from 10 to 20 feet, was installed in the borehole.

Indications of possible contamination were based upon observations of odor, color, moisture content and consistency of the soils. A slight odor was eminating from the soil between 7 and 9 feet.

TANK NUMBER B-1-AW

<u>Tank Inspection</u> - Concrete Sump B-l-AW, although smaller, is similiar to Sump B-l-J in both operational use and structure. It is monolithic in construction and its walls are an average 5-inches thick. All concrete is smooth and in good shape except for the top 5-inches of the south wall. The surface at the top

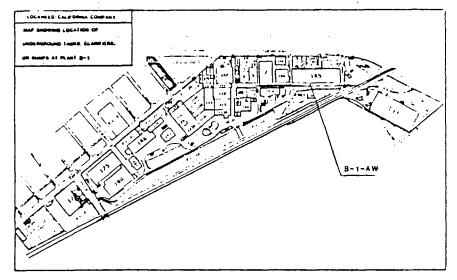
TANK NUMBER B-1-AW continued

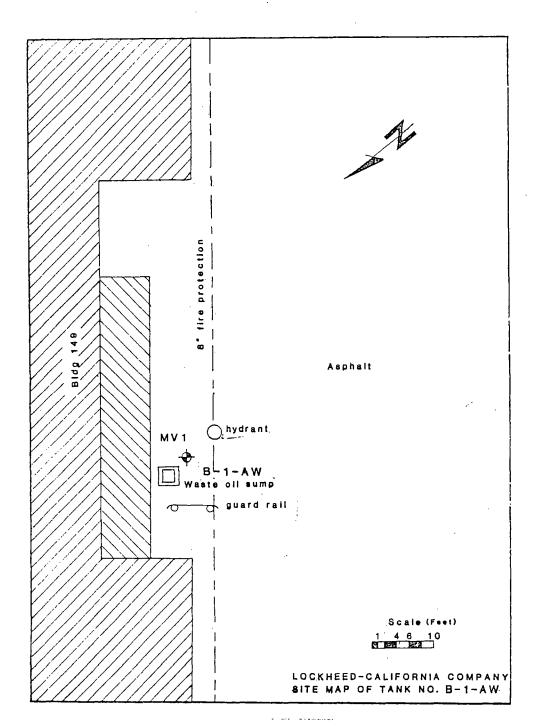
Tank Inspection continued

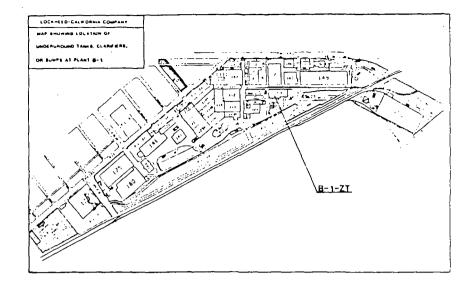
of the south wall is pock marked and uneven, again, probably from an incomplete pour of the concrete. The texture is marked deeply enough to possibly permit fluid to move through the width of the concrete; however, the outside surface of the concrete directly opposite the incomplete concrete is above grade and visible. As there was no evidence of leakage on the outside of the wall opposite the possible source, it is unlikely that any fissures eminating from the issected concrete are deep enough to provide a fluid conduit. If, however, the fissures plunge downward within the concrete and do not "daylight" above grade, there is a possibility of leakage. If this area of concrete is a source of leakage, which is unlikely, it is only active when the sump is from 2-inches of being full to overflowing.

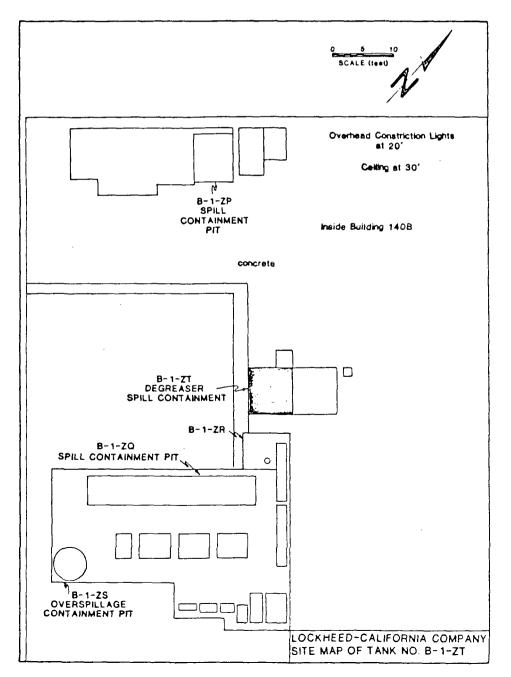
The floor of the sump is not readily visible as the plywood form used in the construction of the sump is still in place. Because it was not possible to inspect beneath the plywood form, the floor of the sump is a possible source of leakage. However, as the oil stored in the sump does not tend to degrade concrete, and the floor of the sump is largely free from active structural stress, it is unlikely the floor of the sump would show fissures beyond that found on the walls. It is therefore concluded that Sump B-l-AW is not leaking.

LABORATORY PROGRAM AND ANALYSIS


Laboratory Program - Soil samples were collected at depths of 5, 12, 22, and 40 feet from Boring B-1-AW-Bl/MV1. Composites of the 5- and 12-foot samples and of the 22- and 40- foot samples were analyzed for oil and grease, chromium, copperk, and zinc. A composite of aliquots from the 5-, 12-, 22-, and 40-foot samples was analyzed for volatile organic compounds.


Laboratory Analysis - The pertinent laboratory analysis results are summarized in Table B-1-AW. A moderate concentration of oil and grease was found in the composite of the 5- and 12- foot samples. Concentrations of chromium, copper, and zinc were below or near the levels reported for the background samples. The composite of samples collected from the 22- and 40-foot depths was found to contain low concentrations of oil and grease, chromium, and zinc. The concentrations of volatile organic compounds in the composite of the 5-, 12-, 22-, and 40-foot depths were all below the limits of detection.


TANK NUMBER B-1-AW continued


<u>Conclusions</u> - Based on field observations and on laboratory analyses, it is concluded that Sump B-l-AW is not leaking.

Recommendations - Proceed with quarterly monitoring of the vapor monitoring well. The walls of Sump B-1-AW are being extended to prevent overflow.

Tank No.	B-1-2T ;			
Plant No./Neare		6-1/Bldg. 140B (Inside) :		
Tank:	Location	1705 Victory Place		
	Installation Date	UNK		
	Capacity, gal.	UNK :		
	Use/Process	PERC degreaser spill containment		
	Contents (past,CAS No.,date)	Perchiorethylene ; 127184		
	toresent.CAS No.)	Perchloretnylene :		
		127184		
		Concrete		
	Geometry	: Square :		
	Depth To Top	UNK		
	Depth To Invert	i unk :		
	Diameter	URR		
	Length (1)	i bin.		
	Containment	Hone :		
	Corrosive Protection (2)	UNK		
	Status	In service		
Tank Piping:	Kumber	i		
	Type	¦ 		
		: UNK 		
	Construction Mat.	: Steel		
Site:	Paving Material/Thiciness	Concrete		
	Appearance	I ÜNK I		
	Surface Contamination	t unk		
Drilling Program:	hig Type/Requirements (3)			
,	Borings (No.)	1		
	Sample Depths	; ; B1/REF, TO B-1-2K ; ;		
	Vapor Wells/Lysimeters (No.)	1		
	Sample Depths	{ { {		
	Completion Interval	I I		
Laboratory Pro	No. of Tank Content Samples	; ; ;		
	Parameters	1		
	No. of Tank Soul Samples			
	Parameters	!		
		; ;		

PARAMETER	 ! BACK-	TTLC	B-1-ZY	B-1-2Y	B-1-ZY	B-1-ZY	B-1-2Y	B-1-2Y	B-1-ZY
	GROUND		LIQUID	FIBRID	B1	91	B1	BI	Bi
	SAMPLE		TREATED			12 ft.	17 ft.	30 ft.	38 ft.
/olatile Organics (ug/kg)	-	N.A.	N.T.		N.D.	N.D.	N.D.		
Benzene	. (0.2	.,,,,,,		N.D.				N.D.	N.D.
Ethyl Benzene	1 (0.1			N.D.				N.D.	N.D.
Chloroform	1 (0.1		!	7.8				N.D.	N.D.
Chloromethane	1 (0.2			N.D.				N.D.	N.D.
Chloroethane	1 (0.8		!	N.D.				N.D.	N.D.
1,1-Dichloroethane	(0.1	!		N.D.				N.D.	N.D.
1,2-Dichloroethane	(0.1			N.D.				N.D.	N.D.
1,2-Dichloropropane	1 (0.1	1	!	N.D.				N.D.	N.D.
1,1,1-Trichlorethane	1 (0.2		· }	N.D.				N.D.	N.D.
1,1,2-Trichloroethane	1 (0.1			N.D.				N.D.	N.D.
Bromodichloromethane	1 (0.1		· !	5.1				N.D.	N.D.
Dibromochloromethane	(0.1	;	- }	2.3				N.D.	N.D.
1,1-Dichloroethene	1 (0.1			N.D.				N.D.	N.D.
trans-1,2-Dichloroethene	1 (0.1			N.D.				N.D.	N.D.
Trichlorpethene	1 (0.3	# 2,040	!	N.D.				N.D.	N.D.
Tetrachloroethene	1 (0.4	- 2,010		1.6				18.1	5.3
Toluene	1 (0.4		!	N.D.				N.D.	N.D.
Methyl Ethyl Ketone	1 (0.5			N.D.				N.D.	N.D.
 Petroleum Hydrocarbon (mg/kg)	- ! (2 0	N.A.	: N.T.	N.T.	N.T.	N.T.	 N.Т.	N.T.	N.T.
Oil & Grease (mg/kg)	1 N.T.	N.A.	N.T.	41.5	N.T.	N.T.	N.T.	N.T.	N.T.
CAM Hetals (mg/kg)	- 		 	N. T.				·	
Antimony	1 (2.5	500	(0.25		(2.5	(2.5	<2.5	(2.5	(2.5
Arsenic	1 13.4	500	(0.25		27.0	9.4	9.3	18.7	22.3 -
Bariu a	1 91.9	10,000	1.6		101	30.3	28.9	41.0	79.4
Beryllium.	1 (1.0	75	(0.1		(1.0	(1.0	(1.0	(1.0	(1.0
Cadmium	1 (2.5	100	(0.05		(0.5	(0.5	(0.5	2.71	(0.5
Chromium (Total)	1 9.6	2,500	6.7	*	13.3	(0.5	5.4	(0.5	11.4
Cobalt	1 6.5	8,000	0.5		9.3	4.7	2.8	3.1	8.6
Copper	22.1	250	1 6.9		13.3	<1.0	6.0	<1.0	8.9
Lead	(2.5	1,000	2.9		4.4	⟨2.5	(2.5	⟨2.5	⟨2.5
Mercury	1 (0.1	20	0.004		0.146	0.198	0.139		0.197
Molybdenus	1 6.3		(0.1		17.6	8.2	5.2	5.2	14.2
Nickel	8.4	2,000	0.1		8.4	(0.5	2.9	₹0.5	6.9
Seienium	1 (2.5	•	(0.25		(2.5	(2.5	(2.5	(2.5	(2.5
Silver	1 (2.5		(0.3		⟨2.5	(2.5	(2.5	(2.5	(2.5
Thallium	1 (2.5		(0.05		<2.5	(2.5	(2.5	(2.5	(2.5
Vanadiu n	1 22.0		(0.05		30.6	11.8	12.7	12.0	26.3
Zinc	38.7		21.6		54.5	(0.5	17.2	(0.5	34.6
 Others	-¦ ¦		: N.T.						
pH (standard units)	8.24	N.A.	 !	8.09	8.65	8.67	8.49	7.78	8.76
	. 0,27		•						
•	! N T	N. 6	!	NT	M T	N I	Ni	Mi	Ne i
Sodium (mg/kg) Cyanide (mg/kg)	N.T.	N.A. N.A.	<u> </u>	N.T. N.T.	N.T. N.T.	N.T. N.T.	N.T. N.T.	N.T. N.T.	N.T. N.T.

N.A. - NOT AVAILABLE

N.D. - NOT DETECTED

N.T. - NOT TESTED

TTLC - TOTAL THRESHOLD LIMIT CONCENTRATION

t #g/kg

FIELD PROGRAM

One boring, which was converted to a suction lysimeter, was drilled/installed to assess conditions surrounding Clarifier B-1-ZY.

BORING B-1-ZY-B1/SUCTION LYSIMETER B-1-ZY-SL1

Monitoring Installations - Boring/Suction Lysimeter B-1-ZY-B1/SL1 was drilled/installed north of the approved location due to rig access problems. Both the actual and approved locations of the boring/suction lysimeter are indicated on the site map.

<u>Sampling Intervals</u> - Soil samples from the boring/suction lysimeter were to have been collected at depths of 7, 14, 20, 30 and 40 feet according to the Work Plan. However, the samples were extracted from depths at 5, 12, 17, 30 and 40 feet. These depths represent intervals which should provide sufficient characterization of the chemical profile of the soil.

Field Observations - The gray color and fine grain size of the sand remained consistent throughout the first 10 feet of the boring/suction lysimeter. At 10 feet, the sand became lighter gray and the grain size became more coarse. At 39 feet, the sand became brown.

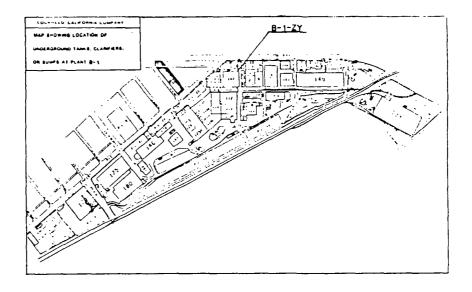
Indications of possible contamination were based upon observations of odor, color, moisture content, and soil consistency. The soil from just below the surface to 39 feet is discolored. The brown sand that predominates the lithology has been altered to various shades of gray in the upper 39 feet of the excavation. There was also a slight odor associated with the grey sand.

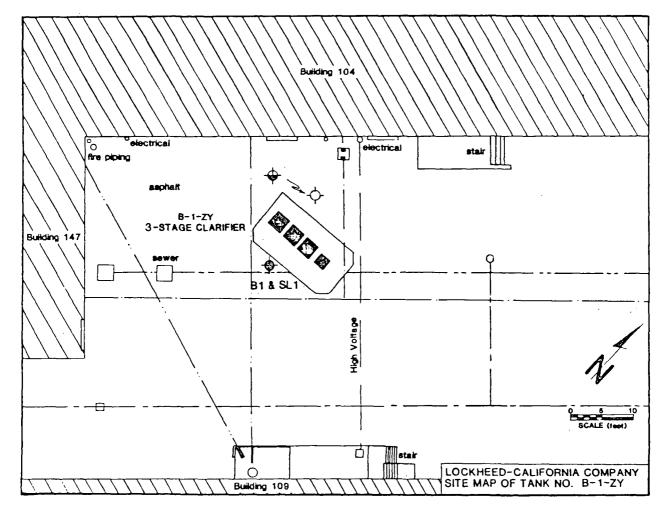
LABORATORY PROGRAM AND ANALYSIS

Laboratory Program

A liquid sample was collected from Clarifier B-1-ZY and treated with nitric acid to maintain metals in soluble form for subsequent CAM metals analysis. A second liquid sample was collected and analyzed for volatile organic compounds, oil and grease, and pH. Individual soil samples were collected from Boring B-1-ZY-Bl and analyzed for volatile organics, CAM metals, and pH.

Laboratory Analysis - The pertinent laboratory analysis results are summarized in Table B-1-ZY. The treated liquid sample was found to contain concentrations of CAM metals that are below the limits of detection or near the levels reported for the background sample. The untreated liquid sample was reported to


contain 7.8 ug/kg chloroform, 5.1 ug/kg bromodichloromethane, 2.3 ug/kg dibromochloromethane, 1.6 ug/kg tetrachloroethene, and 41.5 mg/kg oil and grease. Low to moderate concentrations of tetrachloroethene (5.3 ug/kg and 18.1 ug/kg) were found in the 30 and 38 foot soil samples from Boring B-1-ZY-Bl. Volatile organic compounds were not detected in any of the other soil samples.


CONCLUSIONS

Based on field observations (slight odor) and laboratory analysis results, it is concluded that it is unlikely the clarifier is leaking. Additional sources of contamination include clarifier overflow and surface spills.

RECOMMENDATIONS

A tank integrity test and additional sampling and analysis is required to determine the source of contamination in the soil around Clarifier B-1-ZY.

		D-1-2Y			
lank No.					
Plant No./Nea	(B-1/Bldg. 104 (S 51de)			
lank:	Location	1705 Victory Place			
	Installation Date	UNK			
	Capacity, gal.	UNK			
	Use/Process	Clarifier (4-stage)			
	Contents (past,CAS No.,date);	Deburring agent			
	(present,CAS No.)	Deburring agent			
	Construction Materials	Concrete			
	Geosetry	Rectangular			
	Depth To Top	UNK			
	Depth To Invert	9.3 ft			
	Diageter	2.2 ft			
	Length (1)	17 ft			
	Containment				
	Encrosive Protection (2)	Unk			
	Status				
* D		In service			
Tank Piping:	Number Type	UNK			
		UNX			
	Construction Mat.	Steel			
Site:	Paving Material/Thickness	Asphalt			
	Appearance	LANK			
	Surface Contamination	UNK			
Drilling Program:	Rig Type/Requirements (3)	H.S. Auger			
	Borings (No.)	1			
	Sample Depths	1 91/5,12,17,30 ft 1 Jar 38 ft			
	Vapor Wells/Lysimeters (No.)	'			
		SL1/REF, TO B1			
	Completion interval	: :			
Laboratory Pr	ogram (4) Mo. of Tank Content Samples	3			
	Parameters				
	We of Tool Co.) Frances	,			
	Parameters				

				V 0 0 0	
CONSTRUCTION DETAILS	DEPTH	LOG	BLOW CNTS	LITHOLOGIC DESCRIPTION	
	- 0 -	いください		-Asphalt -Concrete, 5-in thick	
	- 2 -			-Sand, fine grain, gray, slightly cohesive,	
	- 6 -		11	slightly moist, sewage odor, occasional pebbles	
	- 8 -			-At 4.5 ft,thin lenses of lighter gray,very loose	
	- 10 -			-Sand, coarse grain, gray,	
	- 12 -	G	47	occasional cobbles, frequent gravel,odor	
	- 14 -	0.			
<u> </u>	- 16 - - 18 -		50+		
	- 20 -	0			
a o	- 22 -	0			
(A)	- 24 -				
20	- 26 -	• 0			
0	- 28 -	0			
	- 30 - - 32 -	.0	50+		
	- 34 -				
3	- 36 -	<i>°</i> •			
	- 38 -	Ć,	Jar	-Color change Sand, medium to coarse grain, brown,	
COMPLETION & BACKFILL	- 40 -	. 0		odor continues	
-Suction Lysimeter at 9 ft -Blank 2-in I.D.					
PVC pipe, 0-5 ft -Concrete, 0-4 ft -Bentonite, 4-5 ft -Clean sand & native	rete, 0-4 ft onite, 4-5 ft TANK NO. B-1-ZY				
mix, 5-9 ft -Native material, caved 9-40 ft	ВО	RING N	10. <u>B</u> -	<u>-1-ZY-B</u> 1	

APPENDIX C LABORATORY REPORTS

DIRECTORY TANK INTEGRITY TEST RESULTS LOCKHEED PLANT B-1

TANK NUMBER	EZY-CHECK WORK SHEET NO.
B-1-C	7

EZY-CHEK WORK SHEET NO. 1

*

Compnay Name Dean Gregg & Associates	Tank Farm Location Lockheed California Company					
ContactJohn Gregg	Contact					
Address 18351 Beach Blvd.	Address 2555 N. Holls	ywood Way				
City, State Huntington Beach, California 92647	City, StateBurbank, (California				
Telephone	Telephone	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
Contractor Horner Creative Metals, Inc.	OperatorDavid Park	nurst Cava in	Meurs			
Address 211 East Grove Street	Date <u>May 31, 1985</u>					
City State Kawkawlin, Michigan 48631	Telephone					
Tank# Capacity Diameter Product	High Test Results	Low Test Results	Certified Tight			
A-‡-F 10 12,000 96" Diesel	0018 g.p.h.	N/R	Yes			
B-1-C 5,000 96" Waste Water	009 g.p.h.	N/R	Yes			
B-6-4 6,000 96" Motor Oil	0067 g.p.h.	N/R	Yes			
B-6-0 150 30" Gas & Diesel Mixed		N/R	Yes			
B-6-N 550 38" Waste Water	+.0053 g.p.h.	N/R	Yes			
		-				
Remarks All of the above tank systems certified tight acc	cording to N.F.P.A. #329	. Tank #A-1-F 10 is	equipped with			
a submerged pump. The product line should be disconne	cted and a seperate hydro	ostatic line test per	formed.			
•						

DIRECTORY OF CHEMICAL ANALYSES FOR SAMPLES COLLECTED AT LOCKHEED PLANT B-1

SAMPLE	I.D. 1	LAB REPORT NO.	SAMPLE	I.D.	LAB REPORT NO.
NON-FUE	<u></u>		תג_ו_ם	(TREATED)	1746
NON-FUE	пp			(UNTREATED)	
B-1-BAC	KGROUND	1572	B-1-AP		1970,1686
B-1-C (1621		(TREATED)	1746
	UNTREATED)	1746		(UNTREATED)	
В-1-Н (T-2034	B-1-AU		1490
B-1-I (UNTREATED)	1746	B-1-AU		1490
B-1-I (Bl)	T-2034	B-1-ZB		1970,1685
	UNTREATED)	1746,1778		(UNTREATED)	
B-1-J (1630	B-1-2C		1970,1685
B-1-J (1635	B-1-ZE		1635
B-1-U (1943	B-1-ZE		1635
B-1-U (1970,1643	B-1-ZF		1970,1715
B-1-U (1635	B-1-ZG		1693
B-1-Z (•	1572	B-1-ZI		1630
	(UNTREATED)		B-1-ZJ		1715
B-1-AA		1611		(TREATED)	1746
B-1-AA		1621	B-I-ZW	(UNTREATED)	
	(TREATED)	1746	B-1-ZM		1685
B-1-AC		1746,1778 1715		(TREATED) (UNTREATED)	1746 1746,1778
	(UNTREATED)	1746	B-1-ZN B-1-ZN		1643
B-1-AE		1621		(TREATED)	
B-1-AE	- •	1621		(UNTREATED)	
		1746,1778	$_{\rm B-1-ZY}$	(BI)	1667
B-1-AH		1652		(22)	1007
	(TREATED)	1746	FUELS		
	(UNTREATED)				
B-1-AI		1652	B-1-F1	(MV1)	1596
B-1-AI		1621	B-1-F1		1611
B-1-AJ	(TREATED)	1746	B-1-F2	(MV1)	1611
B-1-AJ	(UNTREATED)	1746,1778	B-1-F3	(MV1)	1686
B-1-AJ		1686	B-1-F4		1596
B-1-AJ		1686	B-1-F4		1596
B-1-AK		1686		3 (MV1)	1572
	(TREATED)	1746	B-1-F1		1572
	(UNTREATED)	1746,1778	B-1-F1		1611
B-1-AL B-1-AM		1686 T-2034,T-2275	[B-1-F1	4 (MV2)	1611
	(B2)	1970,1630			
	(TREATED)	1746			
	(UNTREATED)	1746,1778			
	(B1)	1970,1686			

DIRECTORY OF CHEMICAL ANALYSES RWQCB REQUESTED ACTIONS - LOCKHEED PLANT B-1

SAMPLE I.D.	LAB REPORT NO.
B -1-Z B	ACUREX 8506-024
B-1-ZI	2261 ACUREX 8505-017
B-1-AW	2186

Analytical**Technologies,**Inc. Corporate Offices 225 W 30th Street National City CA 92050 649 477-4473

I.D. 01-001490

October 16, 1984

Gregg & Assocites 18351 Beach Blvd. Huntington Beach, CA 92647

Attention: Dean Gregg

RE: Lockheed project; #84-106

On September 18, 1984 Analytical Technologies, Inc. received the fourth shipment of samples collected from the Lockheed project site. This shipment contained 14 soil samples and 5 water samples. Described below is the disposition of each sample.

1) These soil samples were analyzed for petroleum hydrocarbons (EPA Method 418.1) and/or oil and grease (EPA method 413.2).

```
A1-F1-MV1 @ 14'
Composite of A1-F2-MV1 @ 15' and A1-F2-MV2 @ 14'
A1-F3-MV1 @ 20'
B-1-FAV@ 5' (B-1)
B-1-FAV@22' (B-1)
B-1-FAV@32' (B-1)
B-1-FAV@ x' (B-1)
Composite of B-1-F (B-2) @ 10',22'32' and 39'
```

- 2) This soil was analyzed for volatile organics using GC (EPA Method 8010 %-8020) Composite of B-1-\$A*(B-2) @ 10',22',32' and 39'
- 3) These water samples were analyzed for one or more of the following: CAM metals, sulfate, chloride and sodium.

4) These water samples were analyzed for volatile organics (EPA Method 601 & 602) and pH.

October 16, 1984

Page 2

 $\sqrt{5}$) One soil sample was archived - B-1-F (B-2) @ 5'

All samples were analyzed in accordance with EPA methods or equivalent. Attached are the data summaries. If you have any questions, please call.

Carolyn Sites Data Manager

Reviewed by

Laboratory Supervisor

CAS/br

Enclsoures

NOTE: These samples will be disposed of 30 days from the date of this report, unless informed otherwise.

PETROLEUM HYDROCARBONS, OIL & GREASE Data Summary (EPA Method 418.1 and 413.2)

Gregg & Associates Lockheed Project

Received: 9-18-84 Analyzed: 10-10-84

Sample I.D.	Petroleum Hydrocarbons(mg/kg)	Oil & Grease (mg/kg)
<u> </u>	<u>\\</u>	<u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</u>
A1-F1-MV1 @ 14'	13.7	11.5
Al-F2-MVl @ 15' and Al-F2-MV2 @ 14' (composite)	2.1	NR
Al-F3-MVl @ 20'	26.5	NR
B-1-\$443 5' (B-1)	NR	0.1>
B-1-FA40 10' (B-1)	NR	<1.0
B-1- FA @ 22' (B-1)	NR	<1.0
B-1-Fa@ 32' (B-1)	NR	<1.0
B-1- ≸ 4@ x' (B-1	NR	<1.0
B-1- ≸ ¼(B-2) @ 10',22',32' and	39' 3.3	3.9
(composite)		

Spike Recovery

80.7%

NR = test not requested for this sample

,1-Trichloroethane ,2-Trichloroethane

chlorofluoromethane

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 601 & 602)

Client: GREGG & ASSOCIATES	Date Collected:	9-18-84
Sample I.D.: Composite B-1-Au(B-2)	Date Received by Lab:	9-18-84
Sample Matrix: \$011	Date Analyzed:	9-29-84

<u></u>			
hã/F		μg/L	_
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	
< 0.7	Bromoform	< 0.1	1,1,2-Trichloro
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoro
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		•
< 0.2	2-Chloroethylvinylether		
13.2	Chloroform		
< 0.2	Chloromethane		•
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	l,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		
< 0.1	l,l-Dichloroethene		· ,
< 0.1	trans-1,2-Dichloroethene	5	
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloroproper	ne	
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethar	ne	
< 0.4	Tetrachloroethene		

Analytical Technologies, Inc.

Corporate Offices, 225 W. 30th Street, National City, CA 92050, 679,477,4173

I.D.# 01-001572

December 6, 1984

RECEIVED DEC 1 1 1984

Gregg & Associates 18351 Beach Blvd, Suite L Huntington Beach, CA 92647

Attention: Dean Gregg

RE: Lockheed Project; #84-106

On October 12, 1984 Analytical Technologies, Inc. received the eighth shipment of 18 soil samples collected from the Lockheed project site. These samples were analyzed for volatile organics, petroleum hydrocarbons, metals, pH and cyanide.

Described below is the disposition of each sample:

1) These samples were analyzed for volatile organics in accordance with EPA methods 8010/8020.

Al-Background 10' Bl-Background 10' Al-Background 20' Bl-Background 20' Al-Background 30' Bl-Background 30' Al-Background 40' Bl-Background 40' Composite of B6-S-Bl 10' and 16' Composite of B1-Z-Bl 30' and 40' Bl-Z-Bl 10' Bl-Z-Bl 20'

2) These samples were analyzed for one or more of the following: petroleum hydrocarbons, pH, cyanide and the CAM list of metals

Al-Background 10' Bl-Background 10'
Al-Background 20' Bl-Background 20'
Al-Background 30' Bl-Background 30'
Al-Background 40' Bl-Background 40'
Bl-Z-Bl 10'
Bl-Z-Bl 20'
Composite of Bl-Z-Bl 30' and 40'
Composite of Bl-Fl3-MVI 12' and Bl-Fl3-MV2 12'

All Samples analyses were in accordance with EPA methods or equivalent. Attached are the test results if you have any questions, please call.

Carolyn A. Sites
Carolyn A. Sites
Data Manager

Reviewed by

Laboratory Superviso

Corporate Offices, 225 W 30th Street National City, CA 92050 619 477-4173

I.D. 01-001572

January 31, 1985

Gregg & Associates, Inc. 18351 Beach Blvd., Suite L Huntington Beach, CA 92647

Attention: Ed Baquerizo

Sample composite B1-F13-MV1 12'/B1-F13-MV12' was analyzed for petroleum hydrocarbons on October 26, 1984. Analysis was done by extracting the sample with freon, then analyzing the extract using infrared spectrophotometry, in accordance with EPA method 418.1. Listed below is the test result.

Sample

Petroleum Hydrocarbons, mg/kg

B1-F13-MV1 12'/ B1-F13-MV2 12' Composite

< 2.0

Who W. Strand

Support Services Manager

Reviewed by

Laboratory Manager

ML: mat

VOLATILE ORGANIC ANALYSIS DATA SUMMARY

(EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 10/10/84
Sample I.D.: <u>Bl-Z-Bl 10'</u>	Date Received by Lab: 10/12/84
Sample Matrix: Soil	Date Analyzed: 11/19/84

_			
ug/Kg	-	μg/Kg	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	l,l,l-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane	6.8	Methyl Ethyl Ketone
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		•
< 0.6	1,4-Dichlorobenzene		
ND .	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		, *
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		·
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 10/10/84
	Date Received by Lab: 10/12/84
Sample Matrix: Soil	Date Analyzed: 11/19/84

µо/Кд		ng/Kg	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	- l,l,l-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	- Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	 Vinyl Chloride
< 0.8	Chloroethane	0 1	Mothyl Ethyl Votono
< 0.2	2-Chloroethylvinylether	8.1	_ Methyl Ethyl Ketone
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		· ·
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

VOLATILE ORGANIC ANALYSIS DATA SUMMARY

(EPA METHOD 8010 & 8020)

Client: Gregg & Associates

Date Collected: 10/10/84

Sample I.D.: B1-Z-B1 30' & 40'

Date Received by Lab: 10/12/84

Sample Matrix: Soil Composite

Date Analyzed: 11/19/84

μg/Kg	-	ug/Kg	_
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	 l,l,l-Trichloroethane
< 0.7	Bromoform	< 0.1	- 1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	-Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
N D	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		<i>,</i> •
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 10/12/84
Sample I.D.: Bl-Background	Date Received by Lab: 10/12/84
Sample Matrix: Soil	Date Analyzed: 11/19/84

µg/Kg	_	µg/Kg	_
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	l,l,l-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	_ 2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	_ 1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	l,4-Dichlorobenzene		
ND	_ Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		
< 0.1	l,l-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 10/12/84
	Date Received by Lab: 10/12/84
Sample Matrix: Soil	Date Analyzed: 11/19/84

µg/Kg	· -	μg/Kg	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane -	< 0.2	l,l,l-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	- Vinyl Chloride
< 0.8	Chloroethane		-
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform	•	
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		•
< 0.6	1,4-Dichlorobenzene		
ND ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		
< 0.1	l,l-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

VOLATILE ORGANIC ANALYSIS

DATA SUMMARY

(EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 10/12/84
Sample I.D.: Bl-Background 30'	Date Received by Lab: 10/12/84
Sample Matrix: Soil	Date Analyzed: 11/19/84

µa/Kg	_	µg/Kg	_
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	_ 1,1,1-Trichloroethane
< 0.7	Bromoform _	< 0.1	_ 1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	_ Trichloroethene
< 0.1	Carbon Tetrachloride	ND	_ Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	_ Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		·
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 10/12/84
Sample I.D.: Bl-Background 40'	Date Received by Lab: 10/12/84
Sample Matrix: Soil	Date Analyzed: 11/19/84

µg/Kg	_	μg/Kg	-
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	- l,l,l-Trichloroethane
< 0.7	Bromo form	< 0.1	
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	_ Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		·
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		•
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		,
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

Client: Gregg & ASsociates	Date Received:
Sample I.D.: B1-Z-B1 10'	Date Analyzed: 10/19 to 26/84
Sample Matrix: Soil	Concentration: Total (TTLC)

(Circle One) mg/L or mg/kg			
< 2.5	Antimony	< 0.2	Cyandie
18.0	Arsenic	8.63	pH (units)
103	Barium	< 2.0	Petroleum Hydrocarbons
< 1.0	Beryllium		
< 2.5	Cadmium		
14.6	Chromium (total)		
< 0.05	*Chromium (hexava	lent)	
8.9	Cobalt		
22,2 -	Copper		
4_38	Lead		
_<_0.1	Mercury		
9.0	Molybdenum		
13.3	Nickel		
2.5	Selenium		
< 2.5	Silver		
< 2.5	Thallium		<i>,</i> ·
31.7	Vanadium		
50_0	Zinc		

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates	Date Received:_	10/12/84
Sample I.D.: <u>B1-Z-B1 20'</u>	Date Analyzed:	10/19 to 26/84
Sample Matrix: Soil	Concentration:_	Total (TTLC)

(6)			
(Circle One) mg/L or(mg/Kg)			
< 2.5	Antimony	<0.2	Cyanide
7.16	Arsenic	8.49	pH (units)
44.4	Barium	<2.0	Petroleum Hydrocarbons
< 1.0	Beryllium		
< 2.5	Cadmium		
3.9	Chromium (tot	tal)	
	*Chromium (he:	xavalent)	
2.9	Cobalt		
1]4	Copper		
< 2.5	Lead		
<_0_1	Mercury		
3.3	Molybdenum		
4.4	Nickel		
< 2.5	Selenium		
< 2.5	Silver		
< 2.5	Thallium		
9.2	Vanadium		,
18.6	Zinc		

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates	Date Received: 10/12/84
Sample I.D.: Bl-Background 10'	Date Analyzed: 10/19 to 26/84
Sample Matrix: Soil	Concentration: Total (TTLC)

(Circle One) mg/L or mg/Ko			
< 2.5	Antimony	<0.2	Cyanide
7.76	Arsenic	8.61	pH (units)
36.4	Barium	2.7	Petroleum Hydrocarbons
<1.0	Beryllium		
<2.5	Cadmium		
5.3	Chromium (tota	11)	
<0.05	*Chromium (hexa	avalent)	
2.9	Cobalt		
42.4	Copper		
<2.5	Lead		
<0.1	Mercury		•
3.4	Molybdenum	•	
4.4	Nickel		
<2.5	Selenium		
<2.5	Silver		
<2.5	Thallium		
9_6	Vanadium		
35.5	Zinc		

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates	Date Received: 10/12/84
Sample I.D.: Bl-Background 20'	Date Analyzed: 10/19 to 26/84
Sample Matrix: Soil	Concentration: Total (TTLC)

(Circle One) mg/L or mg/Kg			
< 2.5	Antimony	< 0.2	Cyanide
12.3	Arsenic	8.22	pH (units)
91.9	Barium	< 2.0	Petroleum Hydrocarbons
_ < 1.0	Beryllium		
_< 2.5	Cadmium		
5.3	Chromium (total)		
< 0.05	*Chromium (hexava	lent)	
4.1	Cobalt		
107	Copper		
- < 2.5	Lead		•
<u> </u>	Mercury		
4.2	Molybdenum		
5_4	Nickel		
	Selenium		
- 2.5	Silver		
< 2.5	Thallium		
14.3	Vanadium		<i>.</i> •
25.5	Zinc		

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates D	Date Received: 10/12/84
	Date Analyzed: 10/19 to 26/84
Sample Matrix: Soil C	Concentration: <u>Total (TTLC)</u>

(Circle One) mg/L or(mg/Kg)			
< 2.5	Antimony	<0.2	Cyanide
19.6	Arsenic	7.77	pH (units)
164	Barium	<2.0	Petroleum Hydrocarbons
< 1.0	Beryllium		
< 2.5	Cadmium		
21.8	Chromium (to	otal)	
< 0.05	*Chromium (he	exavalent)	
14.0	Cobalt		
26_6	Copper		
3.42	Lead		•
< 0.1	Mercury		
12_4	Molybdenum		
18.5	Nickel		
2.5	Selenium		
2.5	Silver		
2.5	Thallium		
47.4	Vanadium		•
65.9	Zinc		

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates	Date Received: 10/12/84
Sample I.D.: Bl-Background 40'	Date Analyzed: 10/19 to 26/84
Sample Matrix: Soil	Concentration: Total (TTLC)

(Circle One)			
mg/L or(mg/Kg) < 2.5	Antimony	< 0.2	Cyanide
13.8	Arsenic	8.37	pH (units)
			•
75.1	Barium	< 2.0	Petroleum Hydrocarbons
< 1.0	Beryllium		
< 2.5	Cadmium		
5.9	Chromium (tota	1)	
< 0.05	*Chromium (hexa	valent)	
4.8	Cobalt		
8.5	Copper		
< 2.5	Lead	•	
_<0.1	Mercury		
5_2	Molybdenum		
5_3	Nickel		
< 2.5	Selenium		
_ < 2.5	Silver		•
	Thallium		
16.7	Vanadium		
27.9	Zinc		

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

I.D. 01-001596

November 8, 1984

Gregg & Associates, Inc. 18351 Beach Blvd., Suite L Huntington Beach, CA 92647

Attention: Dean Gregg

Re: Lockheed project; #84-106

On October 23, 1984 Analytical Technologies, Inc. received a ninth shipment containing forty-eight (48) soil samples, collected from the Lockheed project site. The samples were analyzed for cadmium, chromium, pH, petroleum hydrocarbons and volatile organics.

Described below is the disposition of each sample.

1) These samples were analyzed for volatile organics using GC/MS (EPA Method 624).

```
Composite of B1-1 5', 10', 20', 30'
Composite of B1-2 5', 10', 20', 30'
Composite of B1-3 5', 10', 20', 30'
Composite of B1-4 5', 10', 20', 30'
Composite of B1-5 5', 20', 30'
Composite of B1-6 5', 10', 20', 30'
Composite of B1-7 5', 10', 20', 30'
Composite of B1-8 5', 10', 20', 30'
Composite of B1-9 5', 10', 20', 30'
Composite of B6-T-B1 11', 19', 28', 35'
```

2) These samples were analyzed for soil pH, petroleum hydrocarbons (EPA 418.1) and cadmium and chromium using inductively coupled plasma.

```
Composite of B1-1
Composite of B1-2
Composite of B1-3
Composite of B1-8
Composite of B1-4
Composite of B1-9
Composite of B1-5
```


I.D. 01-001596 Gregg & Associates, Inc. Page 2

> 3) These additional soils were also analyzed for petroleum hydrocarbons (EPA Method 418.1)

B1-F1-MV1 20' B1-F4-MV1 12'

B1-F4-MV2 12'

All analyses were in accordance with EPA methods or equivalent. Attached are the test results. If you have any questions, please call.

Carolyn A. Sites
Carolyn A. Sites
Data Manager

Reviewed by

Laboratory Manager

CAS: mat

Attachments

NOTE: Samples from this project will be disposed of in thirty (30) days from the date of this report, unless we are informed otherwise.

I.D. 01-001611

November 12, 1984

RECEIVED NOV 1 5 1984

Gregg & Associates, Inc. 18351 Beach Blvd., Suite L Huntington Beach, CA 92647

Attention: Dean Gregg

Re: Lockheed Project; #84-106

On October 25, 1984 Analytical Technologies, Inc. received the tenth shipment containing thirty-three (33) soil samples, collected from the Lockheed project site. The samples were analyzed for chromium, pH, petroleum hydrocarbons, oil & grease and volatile organics.

Outlined below is the disposition of each sample.

1) These samples were analyzed for soil pH and chromium.

```
AT-A-SL2 5'
₩1-A-SL6 - 5'
LA1-A-SL6 - 10'
                          -A1-A-SL2
                                     10'
LA1-A-SL7 5'
                          A1-A-SL3 51
                          A1-A-SL3 10'
A1-A-SL4 5'
41-A-SL8 --- 6'
                         A1-A-SL4 10'
✓A1-A-SLB 10'
                          A1-A-SL5 5'

✓A1-A-SL9

-41-A-SL9 10'
                          - A1-A-SL5 10'
A1-A-SL10 5'
                           A1-A-SL11 5'
○府1-A-SL10 10'
                           CA1-A-SL11 10'
✓A1-A-LSY 1 5.5'
_A1-A-LSY 1 10'
```

- 2) These two (2) samples were analyzed for volatile organics using GC/MS (EPA Method 8240). B-I-AA-BI √Composite of B1-A#-B1 6', 13', 18', 30', 40' Composite of B1-F14-MV1 12', 12', 25', 40'
- 3) These samples were analyzed for petroleum hydrocarbons (EPA Method 418.1) and/or oil and grease (EPA Method 413.2) using IR. B-1-AA-B1

B1-F14-MV2 12' 81-F14-MV1 12'

I.D. 01-001611 Gregg & Associates, Inc. Page 2

B1-F14-MV1 25' B1-F14-MV1 40'

All analyses were in accordance with EPA methods or equivalent. Enclosed are the test results.

If you have any questions, please call.

Carolyn A. Sites
Data Manager

Reviewed by

Laboratory Manager

CAS: mat

Attachments

NOTE: Samples from this project will be disposed of in thirty (30) days from the date of this report, unless we are informed otherwise.

I.D. 01-001611

DATA SUMMARY

Gregg & Associates Received: 10-25-84 Analyzed: 10-30 to 11-7-84

	Sample I.D.	Petroleum Hydrocarbons (mg/kg)	Oil & Grease (mg/kg)
	EAS .		
√ (B1-A	· 幹-B1 6'	<2	<2
B1-A	B1 13'	2	2
> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-B1 18'	<2	<2
©) B1-	-B1 30'	<2	<2
B1-7	₽-B1 40'	<2	<2
B1-F	F2-MV1	<2	NR
B1-F	F ‡ -MV2 17'	<2	N R
) A WISTEY BI-1	F14-MV2 17'	16	16
	F14-MV1 12'	1 30	130
B1-I	F14-MV1 (25)	2	<2
B1-I	F14-MV1 40	<2	<2

NR = Not a Requested test for this sample.

RESULTS OF EPA QUALITY CONTROL SAMPLES WP 1278, VOLATILE ORGANICS

X			SAMPLE RESULTS ² 11-6-84
13.7	2.5	8.7-18.7	10.7
68.3	14.9	38.5-98.1	61.2
8.1	4.2	MDL-16.5	8.1
10.7	8.1	MDL-26.8	9.2
13.2	3.7	5.8-20.6	14.7
9.6	2.4	4.8-14.4	8.6
11.2	2.7	5.8-16.6	12.5
9.2	2.7	4.0-14.4	10.8
14.0	3.0	8.0-20.0	16.2
	13.7 68.3 8.1 10.7 13.2 9.6 11.2 9.2	X S 95 13.7 2.5 68.3 14.9 8.1 4.2 10.7 8.1 13.2 3.7 9.6 2.4 11.2 2.7 9.2 2.7	13.7 2.5 8.7-18.7 68.3 14.9 38.5-98.1 8.1 4.2 MDL-16.5 10.7 8.1 MDL-26.8 13.2 3.7 5.8-20.6 9.6 2.4 4.8-14.4 11.2 2.7 5.8-16.6 9.2 2.7 4.0-14.4

 $^{^{1}}$ Results of EPA Interlaboratory comparison Studies.

² Results of QC Materials Run Concurrently with Samples.

^{3 95} Percent Confidence Interval.

VOLATILE ORGANIC AMALYSIS (VOA) DATA SUMMARY

Client: Gregg & Associates	Sample I.D.: 1611-Composite Bi-Fi
Sample Matrix: Soil	Date Collected: 10-24-84
Method No.: DIRECT SPARGE	Date Received by Lab: 10-25-84
	Date Analyzed: 11-6-84

µg/Kg	·	μg/Kg	
< 12.5	Bromomethane	< 11.0	Benzene
< 12.5	Chloromethane	< 15.0	Chlorobenzene
< 5.5	Bromodichloromethane	< 15.0	Toluene
< 7.8	Dibromochloromethane	< 18.0	Ethylbenzene
< 7.0	Methylene Chloride	< 12.5	Acrolein
< 11.8	Bromoform	< 12.5	Acrylonitrile
< 4.0	Chloroform	< 25.0	Methyl Ethyl Ketone
< 7.0	Carbon Tetrachloride	< 25.0	Acetone
< 12.5	Trichlorofluoromethane		
< 12.5	Chloroethane		
< 7.0	1,1-Dichloroethane		
< 7.0	1,2-Dichloroethane		
< 9.5	1,1,1-Trichloroethane		
< 12.5	1,1,2-Trichloroethane		
< 17.3	1,1,2,2-Tetrachloroethane		
< 12.5	Viny1 Chloride		

1,1-Dichloroethene

Trichloroethene

Tetrachloroethene

1,2-Dichloropropane

Trans-1,2-Dichloroethene

2-Chloroethylvinylether

CIS - 1,3-Dichloropropene

Trans-1,3-Dichloropropene

< 7.0

< 4.0

< 10.3

< 12.5

< 15.0

< 12.5

< 12.5

VOLATILE ORGANIC ANALYSIS (VOA) DATA SUMMARY

B-1-AA-B1

Client: Gregg & Associates	Sample I.D.: 1611 - Composite B1-2-E
Sample Matrix: Soil	Date Collected: 10-22-84
Method No.: DIRECT SPARGE	Date Received by Lab: 10-25-84
	Date Analyzed: 11-6-84

μg/Kg		μg/Kg	
< 12.5	Bromomethane	< 11.0	Benzene
< 12.5	Chloromethane	< 15.0	Chlorobenzene
< 5.5	Bromodichloromethane	< 15.0	Toluene
< 7.8	Dibromochloromethane	< 18.0	Ethylbenzene
< 7.0	Methylene Chloride	< 12.5	Acrolein
< 11.8	Bromoform	< 12.5	Acrylonitrile
< 4.0	Chloroform	< 25.0	Methyl Ethyl Ketone
< 7.0	Carbon Tetrachloride	< 25.0	Acetone
< 12.5	Trichlorofluoromethane		
< 12.5	Chloroethane		
< 7.0	l,l-Dichloroethane		

1,2-Dichloroethane

Vinyl Chloride

Trichloroethene

Tetrachloroethene

1,2-Dichloropropane

1,1-Dichloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,1,2,2-Tetrachloroethane

Trans-1,2-Dichloroethene

2-Chloroethylvinylether

CIS - 1,3-Dichloropropene

Trans-1,3-Dichloropropene

< 7.0

< 9.5

< 12.5

< 17.3

< 12.5

< 7.0

< 4.0

< 4.8

< 10.3

< 12.5

< 15.0

< 12.5

< 12.5

1.D. 01-001621

December 13, 1984

RECEIVED DEC 1 7 1894

Gregg & Associates 18351 Beach Blvd., Suite L Huntington Beach, CA 92647

Attention: Dean Gregg

Re: Lockheed project; # 84-106

On October 29, 1984 Analytical Technologies, Inc. received twenty-two (22) soil samples collected from the Lockheed project site. The samples were analyzed for pH, volatile organics, petroleum hydrocarbons, oil and grease and the CAM list of metals.

Described below is the disposition of each sample.

- These samples were analyzed for volatile organics in accordance with EPA method 8240. Composite of B1-AE-B2 17', 23', 30', 40'
 Composite of B1-AA-B2 13', 18', 30', 40'
 Composite of B1-AE-B1 17', 23', 30', 40'
 Composite of B1-C-B1 17', 22', 30', 40' B1-AI-S11 10'
- 2) These samples were analyzed for the CAM list of metals and pH. B1-AI-S11 10' Composite of B1-C-B1 17', 22', 30', 40'
- These samples were analyzed for petroleum hydrocarbons and/or oil and grease, in accordance with EPA methods 418.1 and 413.2, respectively.

```
B1-AE-B2
            17'
                                 B1-AE-B1
                                             17'
B1-AE-B2
            23'
                                 B1-AE-B1
                                             231
B1-AE-B2
           30'
                                 B1-AE-B1
                                             30'
           40'
                                 B1-AE-B1
                                             40'
           13'
                                 Composite of B1-C-B1 17',22',30',40'
B1-AA-B2
           18'
            30'
B1-AA-B2
           40'
```

These samples have been archived. B1-AE-B2 5' B1-AE-B1 5' B1-AI-S11 B1-C-B1 B-1-AA-B2 ---- B1-AA-B2

Page 2 I.D. 01-001621 Gregg & Associates

All samples were tested in accordance with EPA methods or equivalent. Enclosed are the test results and quality control data.

If you have any questions, please call.

Carolyn A. Sites
Data Manager

Reviewed by

Mark King Laboratory Manager

CAS: mat

Attachments

NOTE: Samples from this project will be disposed of in thirty (30) days from the date of this report, unless we are informed otherwise.

Ketone

VOLATILE ORGANIC ANALYSIS (VOA) DATA SUMMARY

Client: Gregg & Associates	Sample I.D.: 1621 Composite B1-AE-B2
Sample Matrix: Soil	Date Collected: 10-26-84
Method No.: DIRECT SPARGE	Date Received by Lab: 10-29-84
	Date Analyzed: 11-6-84

		Vate	e Analyzed:	11-0-04
	цg/Kg		иg/Kg	
	< 12.5	Bromomethane	< 11.0	 Benzene
	< 12.5	Chloromethane	< 15.0	Chlorobenzene
	< 5.5	Bromodichloromethane	< 15.0	Toluene
	< 7.8	Dibromochloromethane	< 18.0	Ethylbenzene
	< 7.0	Methylene Chloride	< 12.5	Acrolein
	< 11.8	Bromoform	< 12.5	Acrylonitrile
	< 4.0	Chloroform	< 25.0	Methyl Ethyl
	< 7.0	Carbon Tetrachloride	< 25.0	Acetone
	< 12.5	Trichlorofluoromethane		
	< 12.5	Chloroethane		
	< 7.0	1,1-Dichloroethane		
	< 7.0	1,2-Dichloroethane		
	< 9.5	l,1,1-Trichloroethane		
	< 12.5	1,1,2-Trichloroethane		
	< 17.3	1,1,2,2-Tetrachloroetha	ne	
	< 12.5	Vinyl Chloride		
	< 7.0	1,1-Dichloroethene		y.
	< 4.0	Trans-1,2-Dichloroethen	е	
	< 4.8	Trichloroethene		
	< 10.3	Tetrachloroethene		
	< 12.5	2-Chloroethylvinylether		
	< 15.0	1,2-Dichloropropane		
	< 12.5	CIS - 1,3-Dichloroprope	ne	
	< 12.5	Trans-1,3-Dichloroprope	ne	

VOLATILE ORGANIC ANALYSIS (VOA) DATA SUMMARY

B-1-AA-B2-

Benzene

Toluene

Acrolein

Acetone

Chlorobenzene

Ethylbenzene

Acrylonitrile

Methyl Ethyl Ketone

Client: Gregg & Associates Sample I.D.: 1621 Composite B1-A4-B2 Date Collected: 10-26-84 Sample Matrix: Soil Date Received by Lab: 10-29-84 Method No.: ___DIRECT SPARGE Date Analyzed: 11-6-84

μς/Kg_		µg/Kg
< 12.5	Bromomethane	< 11.0
< 12.5	Chloromethane	< 15.0
< 5.5	Bromodichloromethane	< 15.0
< 7.8	Dibromochloromethane	< 18.0
< 7.0	Methylene Chloride	< 12.5
< 11.8	Bromoform	< 12.5
< 4.0	Chloroform	< 25.0
< 7.0	Carbon Tetrachloride	< 25.0
< 12.5	Trichlorofluoromethane	
< 12.5	Chloroethane	
< 7.0	l,l-Dichloroethane	
< 7.0	1,2-Dichloroethane	
< 9.5	l,l,l-Trichloroethane	
< 12.5	1,1,2-Trichloroethane	
< 17.3	1,1,2,2-Tetrachloroethane	
< 12.5	Vinyl Chloride	
< 7.0	1,1-Dichloroethene	
< 4.0	Trans-1,2-Dichloroethene	
< 4.8	Trichloroethene	
< 10.3	Tetrachloroethene	
< 12.5	2-Chloroethylvinylether	
< 15.0	1,2-Dichloropropane	
< 12.5	CIS - 1,3-Dichloropropene	
< 12.5	Trans-1,3-Dichloropropene	

VOLATILE ORFANIC ANALYSIS (VOA) DATA SUMMARY

	DATA JOIN	, IAICI		
			<u>DUPLICATE</u>	3-1-AA-B
Client: Greg	g & Associates s	ample I.D.: <u>1621</u>	Composite B1-AA-B2	
Sample Matrix:_	SoilD	ate Collected:	10-26-84	
Method No.: D	IRECT SPARGE D	ate Received by La		
	D	ate Analyzed:	11-6-84	
μg/Kg		μg/Kg		
< 12.5	Bromomethane	< 11.0	Benzene	
< 12.5	Chloromethane	< 15.0	Chlorobenzene	
< 5.5	Bromodichloromethane	< 15.0	Toluene	
< 7.8	Dibromochloromethane	< 18.0	Ethylbenzene	
< 7.0	- Methylene Chloride	< 12.5	Acrolein	
< 11.8	Bromoform	< 12.5	Acrylonitrile	
< 4.0	Chloroform Chloroform	< 25.0	Methyl Ethyl K	Cetone
< 7.0	Carbon Tetrachloride	< 25.0	Acetone	
< 12.5	- Trichlorofluoromethan	e		
< 12.5	Chloroethane			
< 7.0	1,1-Dichloroethane			
< 7.0	1,2-Dichloroethane			
< 9.5	1,1,1-Trichloroethane			
< 12.5	1,1,2-Trichloroethane			
< 17.3	_ 1,1,2,2-Tetrachloroet	hane		
< 12.5	Vinyl Chloride			
< 7.0	1,1-Dichloroethene			
< 4.0	Trans-1,2-Dichloroeth	ene		
< 4.8	Trichloroethene			
< 10.3	Tetrachloroethene			
< 12.5	2-Chloroethylvinyleth	er		
< 15.0	_ 1,2-Dichloropropane			
< 12.5	CIS - 1.3-Dichloropro	pene		

Trans-1,3-Dichloropropene

< 12.5

VOLATILE ORGANIC ANALYSIS (VOA) DATA SUMMARY

Client: Gregg & Associates	Sample I.D.: 1621 Composite B1-AE-B1
Sample Matrix: Soil	Date Collected: 10-26-84
Method No.: DIRECT SPARGE	Date Received by Lab: 10-29-84
	Date Analyzed: 11-6-84

	Date An	alyzed: 11-0	
μ¢/Kg		μg/Kg	
< 12.5	Bromomethane	< 11.0	Benzene
< 12.5	Chloromethane	< 15.0	Chlorobenzene
< 5.5	Bromodichloromethane	< 15.0	Toluene
< 7.8	Dibromochloromethane	< 18.0	Ethylbenzene
< 7.0	Methylene Chloride	< 12.5	Acrolein
< 11.8	Bromoform	< 12.5	Acrylonitrile
< 4.0	Chloroform	< 25.0	Methyl Ethyl Ketone
< 7.0	Carbon Tetrachloride	< 25.0	Acetone
< 12.5	Trichlorofluoromethane		
< 12.5	Chloroethane		
< 7.0	l,l-Dichloroethane		
< 7.0	1,2-Dichloroethane		
< 9.5	l,l,l-Trichloroethane	•	
< 12.5	1,1,2-Trichloroethane		
< 17.3	1,1,2,2-Tetrachloroethane		
< 12.5	Vinyl Chloride		
< 7.0	1,1-Dichloroethene		
< 4.0	Trans-1,2-Dichloroethene		
< 4.8	Trichloroethene		
< 10.3	Tetrachloroethene		
< 12.5	2-Chloroethylvinylether		•
< 15.0	1,2-Dichloropropane		
< 12.5	CIS - 1,3-Dichloropropene		
< 12.5	Trans-1,3-Dichloropropene	·	•

VOLATILE OREANIC ANALYSIS (VOA) DATA SUMMARY

Client: Gregg	& Associates S	Sample I.D.:	1621 Cor	mposite B1-C-B1
Sample Matrix:	• •	Date Collect	_	0-26-84
Method No.: D	DIRECT SPARGE	Date Receive	d by Lab:	10-29-84
	[Date Analyze	d:1	1-6-84
µg/Kg	-		μα/Kg	_
< 12.5	Bromomethane	•	< 11.0	Benzene
< 12.5	Chloromethane		< 15.0	Chlorobenzene
< 5.5	Bromodichloromethane		< 15.0	Toluene
< 7.8	Dibromochloromethane		< 18.0	Ethylbenzene
< 7.0	Methylene Chloride		< 12.5	Acrolein
< 11.8	Bromoform		< 12.5	Acrylonitrile
< 4.0	Chloroform		< 25.0	Methyl Ethyl Ketone
< 7.0	Carbon Tetrachloride	·	295	Acetone
< 12.5	Trichlorofluorometha	ne		
< 12.5	_ Chloroethane			
< 7.0	1,1-Dichloroethane			
< 7.0	1,2-Dichloroethane			
< 9.5	1,1,1-Trichloroethan	9		
< 12.5	1,1,2-Trichloroethan	9		
< 17.3	1,1,2,2-Tetrachloroe	thane		
< 12.5	Vinyl Chloride			
< 7.0	1,1-Dichloroethene			,.
< 4.0	Trans-1,2-Dichloroet	hene		
< 4.8	Trichloroethene			

Tetrachloroethene

1,2-Dichloropropane

2-Chloroethylvinylether

CIS - 1,3-Dichloropropene

Trans-1,3-Dichloropropene

< 10.3

< 12.5

< 15.0

< 12.5

< 12.5

VOLATILE ORGANIC ANALYSIS (VOA) DATA SUMMARY

Client: Gregg & Associates_	Sample I.D.: 1621 Composite B1-A:-S11
Sample Matrix: Soil	Date Collected: 10-26-84
Method No.: DIRECT SPARGE	Date Received by Lab: 10-29-84
	Date Analyzed: 11-6-84

<u> </u>		μg/Kg	
< 12.5	Bromomethane	< 11.0	Benzene
< 12.5	Chloromethane	< 15.0	Chlorobenzene
< 5.5	Bromodichloromethane	< 15.0	Toluene
< 7.8	Dibromochloromethane	< 18.0	Ethylbenzene
< 7.0	Methylene Chloride	< 12.5	Acrolein
< 11.8	Bromoform	< 12.5	Acrylonitrile
< 4.0	Chloroform	< 25.0	Methyl Ethyl Ketone
< 7.0	Carbon Tetrachloride	196	Acetone
< 12.5	Trichlorofluoromethane		
< 12.5	Chloroethane		
< 7.0	l,l-Dichloroethane		
< 7.0	1,2-Dichloroethane		
< 9.5	1,1,1-Trichloroethane		
< 12.5	1,1,2-Trichloroethane		
< 17.3	1,1,2,2-Tetrachloroethane		
< 12.5	Vinyl Chloride		
< 7.0	1,1-Dichloroethene		
< 4.0	Trans-1,2-Dichloroethene		
< 4.8	Trichloroethene		
< 10.3	Tetrachloroethene		
< 12.5	2-Chloroethylvinylether		
< 15.0	1,2-Dichloropropane		
< 12.5	CIS - 1,3-Dichloropropene		
< 12.5	Trans-1,3-Dichloropropene		

RESULTS OF EPA QUALITY CONTROL SAMPLES WP 1278, VOLATILE ORGANICS

PARAMETER	Х	EPA DA S 95	TA ¹ ∀ C.I. ³	SAMPLE RESULTS ² 11-06-84
1,2-dichloroethane (13)	13.7	2.5	8.7-18.7	10.7
Chloroform ⁽¹²⁾	68.3	14.9	38.5-98.1	61.2
1,1,1-trichloroethane (14)	8.1	4.2	MDL-16.5	8.1
1,1,2-trichloroethene ⁽²⁰)	10.7	8.1	MDL-26.8	9.2
Carbon Tetrachloride ⁽¹⁵⁾	13.2	3.7	5.8-20.6	14.7
$1,1,2,2$ -Tetrachloroethene (2^{ϵ})	9.6	2.4	4.8-14.4	8.6
Bromodichloromethane (16)	11.2	2.7	5.8-16.6	12.5
Dibromochloromethane (24)	9.2	2.7	4.0-14.4	10.8
Bromoform ⁽²⁵)	14.0	3.0	8.0-20.0	16.2

Results of EPA Interlaboratory comparison Studies.

Results of QC Materials Run Concurrently with Samples.

^{3 95} Percent Confidence Interval.

Oil and Grease (EPA 413.2)

DATA SUMMARY

Gregg & Associates Lockheed Project Received: 10-29-84 Analyzed: 11-12/13-84

		(mg/kg)
B1-AE-B1	17'	4 .
B1-AE-B1	23'	2
B1-AE-B1	30'	<2
B1-AE-B1	40'	<2
B1-AE-B2	17'	39.3
B1-AE-B2	23'	7.1
B1-AE-B2	30'	36.4
B1-AE-B2	40'	39.8
/B1-A4-B2	13'	9.2
) B1-AA-B2	18'	22
) B1-AA-B2	30'	8
B1-AA-B2	40'	<2

Petroleum Hydrocarbons, total (EPA 418.1) (mg/kg)

B1-C-B1 Composite

<2.0

Client: Gregg & Associates	Date Received: 10-29-84
Sample I.D.: 1621 B1-AI-S11	Date Analyzed: 11-6- to 10-84
Sample Matrix: Soil	Concentration: Total (TTLC)

(Circle One) mg/L or (mg/Kg)	
<2.5	Antimony
5.9	Arsenic
48.2	Barium
1.1	Beryllium
<0.5	Cadmium
4.4	Chromium (total)
	*Chromium (hexavalent)
4.0	Cobalt
5.1	Copper
<2.5	. Lead
<0.1	Mercury
<1.0	Molybdenum
3.2	Nickel
<2.5	Selenium
<2.5	Silver
<2.5	Thallium
9.9	Vanadium
16.0	Zinc
8.54	pH (units)

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates	Date Received:	10-29-84
Sample I.D.: 1621 B1-C-B1 Composite	Date Analyzed:	11-6 to 10-84
Sample Matrix: Soil	Concentration:	Total (TTLC)

(Circle One)	
mg/L or (mg/Kg)	
<2.5	Antimony
11.2	Arsenic
57.6	Barium
<1.0	Beryllium
<0.5	Cadmium
6.8	Chromium (total)
<0.5	*Chromium (hexavalent)
6.5	Cobalt
12.0	Copper
<2.5	Lead
<0.1	Mercury
<1.0	Molybdenum
5.7	Nickel
<2.5	Selenium
<2.5	Silver
<2.5	Thallium
18.5	Vanadium
23.9	Zinc
8.07	pH (units)

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

CLIENT	Gregg & Associate
ATI#	01-001621

QUALITY CONTROL DATA

DUPLICATES

MATRIX SPIKES

		DUPLICAL	,			1.11/11/11/	251KF2	
Parameter	Sample I.D.	lst Result	2nd Result	R.P.D.	Sample I.D.	Result	True	% Recovery
Antimony	B1-AI-S11	<2.5	<2.5	-	B1-AI-S11	(ug) 0.28	(ug) 0.25	112
Arsenic	B1-AI-S11	5.9	5.9	0	B1-AI-S11	.0029	.03	97.0
Barium	B1-A1-S11	38.1	58.2	49.8	B1-A1-S11	_	-	95.0
Beryllium	B1-A1-S11	<1.0	1.1	-	B1-AI-S11	-	-	89.0
Cadmium	B1-AI-S11	<0.5	<0.5	· -	B1-AI-S11	3.98	4.97	80.0
Chromium	B1-AI-S11	4.2	4.5	6.8	B1-AI-S11	-	_	95.0
Cobalt	B1-AI-S11	3.8	4.2	10.0	B1-AI-S11	_	-	91.0
Copper	B1-AI-S11	4.8	5.4	8.0	B1-AI-S11	_	_	105
Lead	B1-AI-S11	<2.5	<2.5	-	B1-AI-S11	0.37	0.50	74.0
Mercury	B1-AI-S11	<0.1	<0.1	-	other	0.37	0.50	74.0
Molybdenum	B1-AI-S11	<1.0	<1.0	-	B1-AI-S11	-	-	83.0
Nickel	B1-AI-S11	3.0	3.3	9.4	B1-AI-S11	_	-	97.0
Selenium	B1-AI-S11	<2.5	<2.5		B1-AI-S11	.02	.03	67.0
Silver	B1-AI-S11	<2.5	<2.5	-	B1-AI-S11	-	_	32.0
Thallium	B1-AI-S11	<2.5	<2.5	-				
Vanadium	B1-AI-S11	9.5	10.2	7.1	B1-AI-S11	-	-	97.0
Zinc	B1-AI-S11	11.8	20.2	52.5	B1-AI-S11	-	_	105

R.P.D. = Relative Percent Difference

I.D. 01-001630

December 12, 1984

Gregg & Associates, Inc. 12351 Beach Blvd., Suite L Huntington Beach, CA 92647 RECEIVED DEC 1 4 1934

Project Name: Lockheed

Project Number: 84-106

On October 31, 1984 Analytical Technologies, Inc. received sixteen (16) soil samples collected from the Lockheed project site. Oil and grease, and petroleum hydrocarbons were analyzed for using infrared spectrophotometry, in accordance with EPA Method 418.1. Volatile organics, pH, cyanide, and California Assesment Manual (CAM) metals were analyzed by EPA methods or equivalent.

Described below is the disposition of each sample.

1) These samples were composited and analyzed for pH, volatile organics, CAM metals, and cyanide.

B1-2I-B1 15' 6" B1-71-B1 20' 6" B1-21-B1 30' 6" B1-21-B1 40' 6"

2) These samples were individually analyzed for volatile organics, and oil and grease; and composited for analyses of CAM metals.

B1-AM-B2 16' 6" B1-AM-B2 23' 6" B1-AM-B2 30' 6" B1-AM-B2 40'6"

3) These samples were individually analyzed for volatile organics, petroleum hydrocarbons, and CAM metals.

B1-J-B1 5' 6" B1-J-B1 10'6" B1-J-B1 15' 6" B1-J-B1 20' 6" B1-J-B1 30' 6" B1-J-B1 40' 6"

I.D. 01-001630 Gregg & Associates Page 2

4) These samples were not analyzed, and are being held.

B1-2I-B1 7' 6" B1-AM-B2 7' 6"

Attached are the test results.

Mikayo Langhofer Technical Associate Reviewed by

Laboratory Manager

ML:mat

Attachments

NOTE: Samples from this project will be disposed of in thirty (30) days from the date of this report, unless we are informed otherwise.

Client: <u>Gregg & Associates</u>	Date Received:_	10-31-84
Sample I.D.: R1-2:-B1 Composite	Date Analyzed:_	11-8 thru 29-84
Sample Matrix: Soil	Concentration:	milligrams per kilogram

(Circle One) mg/L or(mg/Kg)	
< 2.5	Antimony
15.5	Arsenic
81.6	Barium
< 1.0	Beryllium
< 0.5	Cadmium
10.7	Chromium (total)
< 0.5	*Chromium (hexavalent)
8.3	Cobalt
15.9	Copper
_< 2.5	Lead
< 0.1	Mercury
_<1.0	Molybdenum
9.2	Nickel
< 2.5	Selenium
< 2.5	Silver
< 2.5	Thallium
26.7	Vanadium
38.5	Zinc
< 0.2	Cyanide
6.48	pH (units)

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates	Date Received: 10-31-84
Sample I.D.: B1-AM-B2 Composite	Date Analyzed: 11-8 thru 29-84
Sample Matrix: Soil	Concentration: milligrams per kilogram

(Circle One) mg/L or(mg/Kg)	
< 2.5	Antimony
23.7	Arsenic
94.5	Barium
1.0	Beryllium
< 0.5	Cadmium
12.1	Chromium (total)
< 0.5	*Chromium (hexavalent)
9.4	Cobalt
15.2	Copper
< 2.5	Lead
< 0.1	Mercury
< 1.0	Molybdenum
10.3	Nickel
< 2.5	Selenium
< 2.5	Silver
< 2.5	Thallium
30.7	Vanadium
36.2	Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Gregg & Associates

I.D. 01-001630

DATA SHEET

Sample		Oil and Grease (mg/kg)	
B1-AM-B2 16'	6"	<2	
B1-AM-B2 23'	6"	7	
B1-AM-B2 30'	6"	<2	
B1-AM-B2 40'	6"	<2	

Client: Gregg & Associates	Date Received: 10-31-84
Sample I.D.: <u>B1-J-B1 5'6"</u>	Date Analyzed: 11-8 thru 29-84
Sample Matrix: Soil	Concentration: milligrams per kilogram

(Circle One) mg/L or(mg/Kg)	
< 2.5	Antimony
26.8	Arsenic
114	Barium
< 1.0	Beryllium
< 0.5	Cadmium
13.8	Chromium (total)
< 0.5	*Chromium (hexavalent)
10.3	Cobalt
16.2	Copper
< 2.5	Lead
< 0.1	Mercury
< 1.0	Molybdenum
11.3	Nickel
< 2.5	Selenium
< 2.5	Silver
< 2.5	Thallium
36	Vanadium
76.6	Zinc
21400	Petroleum Hydrocarbons

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates	Date Received:_	10-31-84
Sample I.D.: B1-J-B1 10'6"	Date Analyzed:_	11-8 thru 29-84
Sample Matrix: Soil	Concentration:	milligrams per kilogram

(Circle One) mg/L or(mg/Kg)	
< 2.5	Antimony
25.9	Arsenic
125	Barium
1.0	Beryllium
< 0.5	Ca dmi um
16.3	Chromium (total)
< 0.5	*Chromium (hexavalent)
11.9	Cobalt
18.2	Copper
< 2.5	Lead
< 0.1	Mercury
< 1.0	Molybdenum
13.5	Nickel
< 2.5	Selenium
< 2.5	Silver
< 2.5	Thallium
38.8	Vanadium
55.6	Zinc
6300	Petroleum Hydrocarbons

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Grego & Associates	Date Received:	10-31-84
Sample I.D.: <u>B1-J-B1 15'6"</u>	Date Analyzed:_	11-8 thru 29-84
Sample Matrix: Soil	Concentration:	milligrams per kilogram

(Circle One)	
mg/L or(mg/kg	
< 2.5	Antimony
16.4	Arsenic
86.7	Barium
< 1.0	Beryllium
< 0.5	Cadmium
11.2	Chromium (total)
< 0.5	*Chromium (hexavalent)
8.0	Cobalt
14.4	Copper
6.5	Lead
< 0.1	Mercury
< 1.0	Molybdenum
7.7	Nickel
< 2.5	Selenium
< 2.5	Silver
< 2.5	Thallium
28.4	Vanadium
35.6	Zinc
22000	Petroleum Hydrocarbons

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates	Date Received:	10-31-84
Sample I.D.: <u>B1-J-B1 20'6"</u>	Date Analyzed:	11-8 thru 29-84
Sample Matrix: Soil	Concentration:	milligrams per kilogram

(Circle One) mg/L or (mg/Kg)	
< 2.5	Antimony
3.9	Arsenic
153	Barium
< 1.0	Beryllium
< 0.5	Cadmium
< 0.5	Chromium (total)
< 0.5	*Chromium (hexavalent)
7.4	Cobalt
4.4	Copper
< 2.5	Lead
< 0.1	Mercury
<1.0	Molybdenum
9.8	Nickel
< 2.5	Selenium
< 2.5	Silver
< 2.5	Thallium
0.9	Vanadium
48.7	Zinc
5	Petroleum Hydrocarbons

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates	Date Received:	10-31-84
Sample I.D.: B1-J-B1 30'6"	Date Analyzed:	11-8 thru 29-84
Sample Matrix: Soil	Concentration:	milligrams per kilogram

(Circle One) mg/L or(mg/Kg)
< 2.5	Antimony
27.4	Arsenic
91.6	Barium
< 1.0	Beryllium
< 0.5	Ca dmí um
12.5	Chromium (total)
< 0.5	*Chromium (hexavalent)
9.8	Cobalt
20.6	Copper
< 2.5	Lead
< 0.1	Mercury
< 1.0	Molybdenum
10.2	Nickel
< 2.5	Selenium
< 2.5	Silver
< 2.5	Thallium
31.8	Vanadium
39.6	Zinc
17700	Petroleum Hydrocarbons

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates	Date Received:	10-31-84
Sample I.D.: B1-J-B1 40'6"	Date Analyzed:	11-8 thru 29-84
Sample Matrix: Soil	Concentration:	milligrams per kilogram

(Circle One) mg/L or(mg/Kg)
< 2.5	Antimony
53.2	Arsenic
119	Barium
1.5	Beryllium
2.3	Cadmium
19.4	Chromium (total)
< 0.5	*Chromium (hexavalent)
12.8	Cobalt
22.7	Copper
3.4	Lead
< 0.1	Mercury
< 1.0	Molybdenum
16.0	Nickel
< 2.5	Selenium
< 2.5	Silver
< 2.5	Thallium
46.3	Vanadium
49.7	Zinc
31100	Petroleum Hydrocarbons

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

0838

VOLATILE ORGANIC ANALYSIS DATA SUMMARY

(EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 10-30-84
Sample I.D.: Bl -Z I-Bl Composite	Date Received by Lab: 10-31-84
Sample Matrix: Soil	Date Analyzed: 12-6-84

µс/Кg	_	μg/Ka	
27.8	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane -	379	 l,l,l-Trichloroethane
< 0.7	Bromoform	< 0.1	
< 0.1	Bromomethane	223	Trichloroethene
< 0.1	Carbon Tetrachloride	ΝD	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
49.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		•
< 0.6	1,4-Dichlorobenzene		
G M	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
15.7	1,2-Dichloroethane		
< 0.1	l,l-Dichloroethene		,
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

VOLATILE ORGANIC ANALYSIS DATA SUMMARY

(EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 10-30-84	
Sample I.D.: B1-AM-B2 16'6"	Date Received by Lab: 10-31-84	
Sample Matrix: Soil	Date Analyzed: 12-6-84	

ya/Ka		µg/Kg	
	Ponzono	· · · · · · · · · · · · · · · · · · ·	— Talwana
71.8	Benzene _ Bromodichloromethane	< 0.4	Toluene
< 0.1	-	1140	_ l,l,l-Trichloroethane
< 0.7	Bromoform	< 0.1	l,l,2-Trichloroethane
< 0.1	Bromomethane _	769	Trichloroethene
< 0.1	Carbon Tetrachloride _	ND	Trichloroflucromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
209	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
N D	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
82.1	1,2-Dichloroethane		-
< 0.1	l,l-Dichloroethene		·*
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

µg/Kg

VOLATILE ORGANIC ANALYSIS

DATA SUMMARY

(EPA METHOD 8010 & 8020)

μg/Kg

< 0.4

< 0.4

Client: Gregg & Associates	Date Collected: 10-30-84
Sample I.D.: B1-AM-B2 23'6"	Date Received by Lab: 10-31-84
Sample Matrix: Soil	Date Analyzed: 12-6-84

< 0.2	Benzene	< 0.4	_ Toluene
< 0.1	Bromodichloromethane	6.4	1,1,1-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	0.5	_ Trichloroethene
< 0.1	Carbon Tetrachloride	ND	_ Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	_ Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
3.2	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	l,2-Dichlorobenzene		
< 0.4	l,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane	NOTE.	Cample approved bushes
< 0.1	1,1-Dichloroethene	NOTE:	Sample arrived broken. Volatile Organic compounds
< 0.1	trans-1,2-Dichloroethene		may have been lost prior
< 0.1	1,2-Dichloropropane		to analysis.
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		

1,1,2,2-Tetrachloroethane

Tetrachloroethene

I.D. 01-001630-9

Client: Gregg & Associate	Date Collected: 10-30-84
Sample I.D.: B1-AM-B2 30'6"	Date Received by Lab: 10-31-84
Sample Matrix: Soil	Date Analyzed: 12-6-84

ug/Ka	_	μg/Kg	- -
57.9	Benzene	44.3	Toluene
< 0.1	Bromodichloromethane	1050	_ _ l,l,l-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	639	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
46.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
42.2	1,2-Dichloroethane		,
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene	•	
< 0.1	trans-1,3-Dichloropropene		
43.3	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

DUPLICATE

Client: Gregg & Associates	Date Collected:	10-30-84
	Date Received by Lab:	10-31-84
Sample Matrix: Soil	Date Analyzed:	12-6-84

µg/Kg	_	µg/Kg	_
55.0	Benzene	36.1	Toluene
< 0.1	Bromodichloromethane (821	1,1,1-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	521	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
56.2	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		1
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
35.3	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
35.2	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

Client: Gregg & Associates	Date Collected: 10-30-84
Sample I.D.: B1-AM-B2 40'6"	Date Received by Lab: 10-31-84
Sample Matrix: Soil	Date Analyzed: 12-6-84

µg/Kg	_	µg/Kg	_
63.5	Benzene	48.6	Toluene
< 0.1	Bromodichloromethane	1150	l,l,l-Trichloroethane
< 0.7	Bromo form	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	633	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
55.4	Chloroform		
< 0.2	Chloromethane		/
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		•
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
49.3	1,2-Dichloroethane		•'
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
47.4	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

Client: Gregg & Associates	Date Collected: 10-30-84
	Date Received by Lab: 10-31-84
Sample Matrix: Soil	Date Analyzed: 12-6-84

μg/Kg	.	µg/Kg	- -
93.3	Benzene	503	Toluene
< 0.1	Bromodichloromethane	955	l,l,l-Trichloroethane
< 0.7	Bromoform	< 0.1	l,1,2-Trichloroethane
< 0.1	Bromomethane	777	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
63.5	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
71.8	1,2-Dichloroethane		
< 0.1	l,l-Dichloroethene		
5350	trans-1,2-Dichloroethene		
8.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
111	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

цg/Kg

Toluene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

Client: Gregg & Associates	Date Collected: 10-30-84
Sample I.D.: <u>B1-J-B1 5'6"</u>	Date Received by Lab: 10-31-84
Sample Matrix: Soil	Date Analyzed: 12-6-84

μg/Kg		µg/К
119	Benzene	549
< 0.1	Bromodichloromethane	1110
< 0.7	Bromoform	< 0.1
< 0.1	Bromomethane	964
< 0.1	Carbon Tetrachloride	ND
< 0.8	Chlorobenzene	< 0.2
< 0.8	Chloroethane	
< 0.2	2-Chloroethylvinylether	
46.0	Chloroform	
< 0.2	Chloromethane	
< 0.1	Dibromochloromethane	
< 0.4	1,2-Dichlorobenzene	
< 0.4	1,3-Dichlorobenzene	
< 0.6	1,4-Dichlorobenzene	
ND	Dichlorodifluoromethane	
< 0.1	l,l-Dichloroethane	
93.0	1,2-Dichloroethane	
< 0.1	1,1-Dichloroethene	
5460	trans-1,2-Dichloroethene\	J
9.3	1,2-Dichloropropane	
< 0.1	cis-1,3-Dichloropropene	
< 0.1	trans-1,3-Dichloropropene	
107	Ethyl Benzene	
< 0.5	Methylene Chloride	
< 0.4	1,1,2,2-Tetrachloroethane	!
< 0.4	Tetrachloroethene	

Toluene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

Client: Gregg & Associates	Date Collected: 10-30-84
Sample I.D.: B1-J-B1 10'6"	Date Received by Lab: 10-31-84
Sample Matrix: Soil	Date Analyzed: 12-6-84

μg/Kg		μg/Kg
101	Benzene	412
< 0.1	Bromodichloromethane	1310
< 0.7	Bromoform	< 0.1
< 0.1	Bromomethane	959
< 0.1	Carbon Tetrachloride	ND
< 0.8	Chlorobenzene	< 0.2
< 0.8	Chloroethane	
< 0.2	2-Chloroethylvinylether	
75.2	Chloroform	
< 0.2	Chloromethane	
< 0.1	Dibromochloromethane	
< 0.4	1,2-Dichlorobenzene	
< 0.4	1,3-Dichlorobenzene	
< 0.6	1,4-Dichlorobenzene	
<u>ND</u>	Dichlorodifluoromethane	
< 0.1	l,1-Dichloroethane	
80.4	1,2-Di <u>c</u> hloroethane	
< 0.1	1,1-Dichloroethene	
4590	trans-1,2-Dichloroethene	
<u>7.3</u>	1,2-Dichloropropane	
< 0.1	cis-1,3-Dichloropropene	
< 0.1	trans-1,3-Dichloropropene	
67.1	Ethyl Benzene	
< 0.5	Methylene Chloride	
< 0.4	1,1,2,2-Tetrachloroethane	
< 0.4	Tetrachloroethene	

VOLATILE ORGANIC ANALYSIS DATA SUMMARY

(EPA METHOD 8010 & 8020)

Client: <u>Gregg & Associates</u>	Date Collected: 10-30-84	
	Date Received by Lab: 10-31-84	
Sample Matrix: Soil	Date Analyzed: 12-6-84	_

μg/Kg	va	µg/Kg	
84.7	Benzene	267	Toluene
< 0.1	Bromodichloromethane	984	
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	647	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride ·
< 0.8	Chloroethane		
< 0.2	_ 2-Chloroethylvinylether		
29.2	Chloroform		
< 0.2	Chloromethane		
< 0.1	_ Dibromochloromethane		•
< 0.4	_ 1,2-Dichlorobenzene		
< 0.4	_ 1,3-Dichlorobenzene		
< 0.6	_ l,4-Dichlorobenzene		
GN	Dichlorodifluoromethane		
< 0.1	l,1-Dichloroethane		
51.8	1,2-Dichloroethane		··
< 0.1	l,l-Dichloroethene		
1050	trans-1,2-Dichloroethene		
8.2	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

Client:	Gregg & Associates	Date	Collected:	10-30-84
Sample I.D).: B1-J-B1 20'6"	Date	Received by	Lab: 10-31-84
Sample Mat	rix: Soil	Date	Analyzed:	12-6-84

ug/Kg	_	µа∕Ка	_
37.3	Benzene	42.8	Toluene
< 0.1	Bromodichloromethane	882	
< 0.7	Bromoform	< 0.1	l,1,2-Trichloroethane
< 0.1	Bromomethane	567	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		•
36.6	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
35.3	5.3 1,2-Dichloroethane		
< 0.1	< 0.1 1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
27.9	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

Client: Gregg & Associates	Date Collected: 10-30-84
Sample I.D.: B1-J-B1 30'6"	Date Received by Lab: 10-31-84
Sample Matrix: Soil	Date Analyzed: 12-6-84

µg/Kg	-	ug/Kg	_
108	Benzene	535	Toluene
< 0.1	Bromodichloromethane	1370	l,l,l-Trichloroethane
< 0.7	Bromoform	< 0.1	_ 1,1,2-Trichloroethane
< 0.1	Bromomethane	1410	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene _	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
12.0	Chloroform	**	
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		•
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
111	1,2-Dichloroethane		,
< 0.1	1,1-Dichloroethene		
5810	trans-1,2-Dichloroethene		
10.4	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
71.5	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

Client: Gregg & Associates	Date Collected: 10-30-84
	Date Received by Lab: 10-31-84
Sample Matrix: Soil	Date Analyzed: 12-6-84

µg/Kg	_	μg/Kg	<u> </u>
70.3	Benzene	430	Toluene
< 0.1	Bromodichloromethane	1100	_ l,l,l-Trichloroethane
< 0.7	Bromoform	< 0.1	_ 1,1,2-Trichloroethane
< 0.1	Bromomethane _	1310	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	_ Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
108	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	l,l-Dichloroethane		
43.5	1,2-Dichloroethane		<i>*</i>
< 0.1	1,1-Dichloroethene		
5.8	trans-1,2-Dichloroethene		
1.7	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

I.D. 01-001635

December 19, 1984

RECEIVED DEC 2 7 1984

Gregg & Associates, Inc. 18351 Beach Blvd., Suite L Huntington Beach, CA 92647

Project Name: CALAC

Project Number: 84106

On November 1, 1984 Analytical Technologies, Inc. received twelve (12) soil samples in brass tubes sampled on October 31, 1984, for analyses. Volatile organics were analyzed using gas chromatography in accordance with EPA Methods 8010 and 8020. Petroleum hydrocarbons were analyzed by removing an aliquot of soil from the tube, extracting it with freon, then analyzing the extract by infrared spectrophotometry, in accordance with EPA Method 418.1. Analyses of chromium, sulfate, and pH were done by EPA methods or equivalent.

Described below is the disposition of each sample.

These samples were composited and analyzed for volatile organics and petroleum hydrocarbons.

B1-ZE-B1 10' 6" B1-ZE-B1 20' 6" B1-ZE-B1 30' 6" B1-ZE-B1 40' 6"

2) These samples were composited and analyzed for volatile organics and petroleum hydrocarbons.

B1-ZE-B2 12' 6" 17' 6" B1-ZE-B2 B1-ZE-B2 30' 6" B1-ZE-B2 40' 6"

3) This sample was analyzed for pH, sulfate, and chromium.

B1-U-SL1 12' 6"

4) These samples are being held.

B1-J-MV1 5' 3"

I.D. 01-001635 Page 2 Gregg & Associates

> B1-J-MV1 12' 6" B1-ZE-B1 5' 6"

Attached are the test results.

Mikayo Langhofer C Technical Associate

Reviewed by

Mark King Laboratory Marager

ML:mat

Attachments

NOTE: Samples from this project will be disposed of in thirty (30) days from the date of this report, unless we are informed

otherwise.

Gregg & Associates

I.D. 01-001635

DATA SHEET

<u>Sample</u>	<u>Petrole</u>	eum Hydrocarbons, mg/kg
B1-ZE-B1 Composite B1-ZE-B2 Composite		<2 <2
Sample	Parameter	<u>ma/kg</u>
B1-U-SL1 12'6"	pH Sulfate(soluble) Chromium (total)	8.19 <5.0 6.0

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 10-31-84
Sample I.D.:B1-ZE-B1 Composite	Date Received by Lab: 11-1-84
Sample Matrix: Soils	Date Analyzed:

μg/Kg	-	µg/Kg	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichloroethane
< 0.7	Bromo form	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
13.4	Chloroform	-	•
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		Detected; Limit of Detection determined.
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		,
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane	-	
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		

Methylene Chloride

Tetrachloroethene

1,1,2,2-Tetrachloroethane

< 0.5

< 0.4

< 0.4

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 10-31-84
Sample I.D.: B1-ZE-B2 Composite	Date Received by Lab: 11-1-84
Sample Matrix: Soils	Date Analyzed:

µg/Kg		μg/Kg	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform	.	
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		·
< 0.1	1,2-Dichloroethane	·	,
< 0.1	1,1-Dichloroethene	ND = Not	Detected; Limit of

trans-1,2-Dichloroethene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

1,1,2,2-Tetrachloroethane

1,2-Dichloropropane

Methylene Chloride

Tetrachloroethene

Ethyl Benzene

< 0.1 < 0.1

< 0.1

< 0.1

< 0.1

< 0.5

< 0.4 < 0.4 ND = Not Detected; Limit of Detection not determined.

I.D. 01-001643

RECEIVED DEC 1 8 1984

December 14, 1984

Gregg & Associates, Inc. 18351 Beach Blvd., Suite L Huntington Beach, CA 92647

Project Name: CALAC

Project Number: 84-106

On November 2, 1984 Analytical Technologies, Inc. received fifteen (15) soil samples collected on November 1, 1984. Volatile organics were analyzed by gas chromatography in accordance with EPA Method 8010 and 8020. California Assessment Manual (CAM) metals were determined by acid digesting aliquots of soil and analyzing the digests by inductively coupled plasma and atomic absorption-graphite furnace. Analyses were in accordance with the EPA 200 series methods. Sulfate ion was analyzed using ion chromatography; cyanide and pH by EPA wet methods.

Described below is the disposition of each sample.

1) These samples were composited and analyzed for volatile organics, CAM metals, cyanide, and pH.

B1-ZN-B1 10' 6" B1-ZN-B1 15' 6" 30' 6" B1-ZN-B1 B1-ZN-B1 40'6"

These samples were composited and analyzed for pH, chromium, and sulfate.

B1-U-B1 13' 6" B1-U-B1 20'6" B1-U-B1 30' 6" B1-U-B1 40' 6"

3) These samples were composited and analyzed for pH, chromium, and sulfate.

B1-U-B2 13' B1-U-B2 20' 30' B1-U-B2 B1-U-B2 40' Gregg & Associates

I.D. 01-001643

DATA SHEET

Sample I.D.	pH (units)	Chromium (mg/kg)	Sulfate (mg/kg)
B1-U-B1 Composite	8.10	6.8	<7.5
B1-U-B2 Composite	8.07	10.4	47.2

Client:	Gregg & Associates	_ Date Received:	11-2-84	
Sample I.	D.: B1-ZN-B1 Composite	Date Analyzed:_	11-7 thru 20-84	
Sample Ma	trix: Soil	Concentration:	Total (TTLC)	

/ Ci 1 - O \	
(Circle One) mg/L or mg/Kg	
<2.5	Antimony
12.8	Arsenic
75.8	Barium
<1.0	Beryllium
<0.5	Cadmium
11.9	Chromium (total)
<0.5	*Chromium (hexavalent)
7.9	Cobalt
14.3	Copper
<2.5	Lead
<0.1	Mercury
<1.0	Molybdenum
8.8	Nickel
<2.5	Selenium
<2.5	Silver
<2.5	Thallium
27.1	Vanadium
33.9	Zinc
<0.2	Cyanide
7.11	pH (units)

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 11-1-84
Sample I.D.: B1-ZN-B1 Composite	Date Received by Lab: 11-2-84
Sample Matrix: Soil	Date Analyzed: 11-7 thru 11-20-84

µo/Kg		ug/Kg	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	l,l,l-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	
< 0.8	Chloroethane		. -
< 0.2	2-Chloroethylvinylether		
4.6	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	l,3-Dichlorobenzene		
< 0.6	l,4-Dichlorobenzene		
ND_	Dichlorodifluoromethane		
< 0.1	l,l-Dichloroethane		,·
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		

Tetrachloroethene

< 0.4

Corporate Offices: 225 W. 30th Street. National City, CA 92050 619 477-4173

I.D. 01-001652

RECEIVED JAN 4 1985

December 14, 1984

Gregg and Associates 18351 Beach Blvd. Suite "L" Huntington Beach, CA 92647

Project Name: CALAC

Project No.: 84-106

On November 6, 1984 Analytical Technologies, Inc. received twelve (12) soil samples for analyses. Volatile organics were analyzed using gas chromatography, in accordance with EPA Methods 8010 and 8020. Petroleum hydrocarbons were analyzed by taking an aliquot of soil, extracting it with freon, and analyzing the extract using infrared spectrophotometry, in accordance with EPA Method 418.1. California Assessment Manual (CAM) metals were determined by acid digesting an aliquot of soil, and analyzing the digest using inductively coupled plasma and atomic absorption graphite furnace, in accordance with the EPA 200 series methods. Cyanide, pH, and surfactants were analyzed by EPA Methods or equivalent.

Described below is the disposition of each sample.

 These samples were composited and analyzed for volatile organics, CAM metals, pH, and cyanide.

2) These samples were composited and analyzed for volatile organics, surfactants, and cyanide.

3) These samples were analyzed individually for volatile organics and petroleum hydrocarbons.

4) These samples were not tested and are being held

Attached are the test results.

Support Services Manager

an W. Shond

Reviewed by

King

Laboratory Manager

Attachments

ML/br

Samples from this project will be disposed of in thirty (30) days NOTE: from the date of this report, unless we are informed otherwise.

Gregg & Associates

01-001652

DATA SHEET

Sample	Parameter	Concentration (mg/kg)
B1-A1-B2 Composite	pH Cyanide	9.01 <0.2
B1-AH-B1 Composite	Surfactants Cyanide	<0.5 <0.2
B6-F21-MV1	Petroleum Hydrocarb	ons 37
B6-F21-MV2	Petroleum Hydrocart	ons 109

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

I.D. 01-001652 (2 thru 5)

Client: Gregg & Associates	Date Collected: 11/5/84
Sample I.D.: Bl-Al-B2/composite	Date Received by Lab: 11/6/84
Sample Matrix: Soil	Date Analyzed: 12/7/84

			•
ug/Kg	· -	μg/Kg	_
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0:2	
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		•
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		, *
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

01-001652 (2 thru 5)

Client: Gregg	& Associates	Date Received:	11/6/84
Sample I.D.:	Bl-Al-B2(Composite	Date Analyzed:	11/14 thru 12/7/84
Sample Matrix:	Soil	Concentration:	Milligrams per kilogram

(Circle One) mg/L or mg/Kg Antimony < 2.5 Arsenic 15.2 Barium 77.1 Beryllium Cadmium < 0.5 Chromium (total) 9.8 *Chromium (hexavalent) 7.2 Cobalt Copper 14.6 Lead Mercury < 0.1 Molybdenum < 2.5 Nickel 9.1 Selenium < 2.5 Silver Thallium < 2.5 Vanadium 24.5 Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

VOLATILE ORGANIC ANALYSIS

DATA SUMMARY

(EPA METHOD 8010 & 8020)

I.D. 01-001652 (2-5)

Client: GREG	G & ASSOCIATES Date	Collected:	11/5/84
Sample I.D.:	Bl-Al-Ba Composite Date	Received by La	ab: 11/6/84
Sample Matrix:		Analyzed: 12/	/7/84
•			
- ///	·		
μg/Kg	_	μg/Kg	
< 0.2	_ Benzene	< 0.4	Toluene
< 0.1	_ Bromodichloromethane	< 0.2	l,l,l-Trichloroethane
< 0.7	_ Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	_ Carbon Tetrachloride	ND	Trichlorofluoromethan
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	l,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	- l,1-Dichloroethane	•	
< 0.1	 l,2-Dichloroethane		•
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene	<u>.</u>	
< 0.1	Ethyl Benzene		
< 0.5	- Methylene Chloride		

1,1,2,2-Tetrachloroethane

Tetrachloroethene

< 0.4

< 0.4

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

I.D. 01-001652 (7-10)

Client: Gregg & Associates	Date Collected: 11/5/84
Sample I.D.: B1-AH-B1 Composite	Date Received by Lab: 11/6/84
Sample Matrix: Soil	Date Analyzed: 12/7/84

<u>µа/Ка</u>		μg/Kg	_	
< 0.2	Benzene	< 0.4	Toluene	
< 0.1	Bromodichloromethane	< 0.2	l,1,1-Trichloroethane	
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane	
< 0.1	Bromomethane	< 0.3	Trichloroethene	
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane	
< 0.8	Chlorobenzene	< 0.2	_ Vinyl Chloride	
< 0.8	Chloroethane			
< 0.2	2-Chloroethylvinylether			
5.7	Chloroform			
< 0.2	Chloromethane			
< 0.1	Dibromochloromethane			
< 0.4	1,2-Dichlorobenzene			
< 0.4	1,3-Dichlorobenzene			
< 0.6	1,4-Dichlorobenzene			
ND	Dichlorodifluoromethane			
< 0.1	1,1-Dichloroethane			
< 0.1	1,2-Dichloroethane			
< 0.1	1,1-Dichloroethene			
< 0.1	trans-1,2-Dichloroethene			
< 0.1	1,2-Dichloropropane			
< 0.1	cis-1,3-Dichloropropene			
< 0.1	trans-1,3-Dichloropropene			
< 0.1	Ethyl Benzene			
73.3	Methylene Chloride			
< 0.4	1,1,2,2-Tetrachloroethane			

Tetrachloroethene

I.D. 01-001667

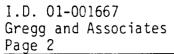
January 3, 1985

Gregg and Associates 18351 Beach Blvd., Suite L Huntington Beach, CA 92647

Attention: Ed Baquerizo

Project: CALAC

Project Number: 84-106


On November 9, 1984 Analytical Technologies, Inc. received twenty-one (21) soil samples for analyses. Volatile organics were analyzed using gas chromatography in accordance with EPA Methods 8010 and 8020. Petroleum hydrocarbons were analyzed by extracting soil aliquots with freon, then, analyzing the freon extract by infrared spectrophotometry, in accordance with EPA Method 418.1. California Assessment Manual (CAM) metals were analyzed by acid digesting soil aliquots, and analyzing the digests by inductively coupled plasma and atomic absorption graphite furnace, in accordance with the EPA 200 series methods. Fluoride and nitrate were analyzed using ion chromatography; pH was analyzed by EPA Method 9040.

Described below is the disposition of each sample.

 These samples were composited and analyzed for volatile organics and petroleum hydrocarbons.

These samples were composited and analyzed for volatile organics and chromium. They were analyzed individually for pH, fluoride, and nitrate.

These samples were composited and analyzed for volatile organics and chromium. They were analyzed individually for pH, fluoride, and nitrate.

4) These samples were analyzed individually for volatile organics.

```
A-1-J Ring Sample 5'
A-1-J Ring Sample 10'
A-1-J Ring Sample 20' + Doe
A-1-J Ring Sample 30'
* A-1-J Ring Sample 40'
B6-U-B1 6" Ring Sample 5'
B6-U-B1 6" Ring Sample 10'
B6-U-B1 6" Ring Sample 20'
B6-U-B1 6" Ring Sample 30'
B6-U-B1 6" Ring Sample 40'
```

5) These samples were composited and analyzed for CAM metals.

```
B6-U-B1 6" Ring Sample 10'
B6-U-B1 6" Ring Sample 20'
B6-U-B1 6" Ring Sample 30'
B6-U-B1 6" Ring Sample 40'
```

6) These samples were analyzed individually for volatile organics, CAM Metals, and pH.

```
B1-ZY-B1 6" Ring Sample 5'
B1-ZY-B1 6" Ring Sample 12'
B1-ZY-B1 6" Ring Sample 17'
B1-ZY-B1 6" Ring Sample 30'
B1-ZY-B1 Aug. Sample 38'
```

The volatile organics were analyzed individually, and the results composited mathematically. The results are tentative, a report containing confirmation of the results will follow.

Attached are the test results.

John W. Strand
Support Services Manager

Reviewed by

Mark King Laboratory Manager

JWS:mat

Attachments

NOTE: Samples from this project will be disposed of in thirty (30) days from the date of this report, unless we are informed otherwise.

* Sample A-1-J Ring Sample 40' was not analyzed successfully by direct sparge technique due to an unidentified interference.

Client: Gregg & Associates	Date Received:_	11-9-84
Sample I.D.: B1-ZY-B1 6" 5'	Date Analyzed:_	11-15 thru 12-11-84
Sample Matrix: Soil	Concentration:	milligrams per kilogram

(Circle One) mg/L or (mg/Kg)	
<2.5	Antimony
27.0	Arsenic
101	Barium
<1.0	Beryllium .
<0.5	Cadmium
13.3	Chromium (total)
<0.5	*Chromium (hexavalent)
9.3	Cobalt
13.3	Copper
4.4	Lead
0.146	Mercury
17.6	Molybdenum
8.4	Nickel .
<2.5	Selenium
<2.5	Silver
<2.5	Thallium
30.6	Vanadium
54.5	Zinc
8.65	pH (units)

*Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

01-001667-18

Client: Gregg & Associates	Date Received:_	11-9-84
Sample I.D.: B1-ZY-B1 6" 12'	Date Analyzed:_	11-15 thru 12-11-84
Sample Matrix: Soil	Concentration:	milligrams per kilogram

(Circle O ne) mg/L or (mg/Kg)
<2.5	Antimony
9.4	Arsenic
30.3	Barium
<1.0	Beryllium
<0.5	Cadmium
<0.5	Chromium (total)
	*Chromium (hexavalent)
4.7	Cobalt
<1.0	Copper
<2.5	Lead
0.198	Mercury
8.2	Molybdenum
<0.5	Nickel
<2.5	Selenium
<2.5	Silver
<2.5	Thallium
11.8	Vanadium
<0.5	Zinc
8.67	pH (units)

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

01-001667-19

DATA SUMMARY OF CAM LISTED METALS

Client	: Grego	& Associates	Date	Received:_	11-9	9-84		
Sample	I.D.:_E	31-ZY-B1 6" 17'	Date	Analyzed:_	11-15	thru	12-11	-84
Sample	Matrix:	Soil	Conce	entration:	mill:	igrams	per	kilogram

(Circle Ope) mg/L or/mg/Kg	
<2.5	Antimony
9.3	Arsenic
28.9	Barium
<1.0	Beryllium
<0.5	Cadmium
5.4	Chromium (total)
<0.5	*Chromium (hexavalent)
2.8	Cobalt
6.0	Copper
<2.5	Lead
0.139	Mercury
5.2	Molybdenum
2.9	Nickel
<2.5	Selenium
<2.5	Silver
<2.5	Thallium
12.7	Vanadium
17.2	Zinc
8.49	pH (units)

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

DATA SUMMARY OF CAM LISTED METALS

Client: Gregg & Associates	Date Received: 11-9-84
Sample I.D.: <u>B1-ZY-B1 6" 30'</u>	Date Analyzed: 11-15 thru 12-11-84
Sample Matrix: Soil	Concentration: milligrams per kilogram

(Circle One) mg/L or mg/Kg	
<2.5	Antimony
18.7	Arsenic
41.0	Barium
<1.0	Beryllium
2.71	Cadmium
<0.5	Chromium (total)
·	*Chromium (hexavalent)
3.1	Cobalt
<1.0	Copper
<2.5	Lead
0.147	Mercury
5.2-	Molybdenum
<u> </u>	Nickel
<2.5	Selenium
<2.5	Silver
<2.5	Thallium
12.0	Vanadium
<0.5	Zinc
7.78	pH (units)

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

DATA SUMMARY OF CAM LISTED METALS

Client: Gregg & Associates	Date Received: 11-9-84
Sample I.D.: B1-ZY-B1 Aug. 38'	Date Analyzed: 11-15 thru 12-11-84
Sample Matrix: Soil	Concentration: milligrams per kilogram

(Circle O ne) mg/L or mg/Kg	
<2.5	Antimony
22.3	Arsenic
79.4	Barium
<1.0	Beryllium
<0.5	Cadmium
11.4	Chromium (total)
<0.5	*Chromium (hexavalent)
8.6	Cobalt
8.9	Copper
<2.5	Lead
0.197	Mercury
14.2	Molybdenum
6.9	Nickel
<2.5	Selenium
<2.5	Silver
<2.5	Thallium
26.3	Vanadium
34.6	Zinc
8.76	pH (units)

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

цg/Kg

< 0.4

< 0.2

< 0.1

< 0.3

ND

< 0.2

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

Client:	Grego	& Associates	Date	Collected:	11-6-84	
Sample	I.D.:	B1-ZY-B1 5'	Date	Received by	Lab: 11-9-84	
Sample	Matrix:	Soil	Date	Analyzed:	12-10-84	

µg/Kg	·
< 0.2	Benzene
< 0.1	Bromodichloromethane
< 0.7	Bromo form
< 0.1	Bromomethane
< 0.1	Carbon Tetrachloride
< 0.8	Chlorobenzene
< 0.8	Chloroethane
< 0.2	2-Chloroethylvinylether
< 0.1	Chloroform
< 0.2	Chloromethane
< 0.1	Dibromochloromethane
< 0.4	1,2-Dichlorobenzene
< 0.4	1,3-Díchlorobenzene
< 0.6	1,4-Díchlorobenzene
ND	Dichlorodifluoromethane
< 0.1	1,1-Dichloroethane
< 0.1	1,2-Dichloroethane
< 0.1	l,l-Dichloroethene
< 0.1	trans-1,2-Dichloroethene
< 0.1	1,2-Dichloropropane
< 0.1	cis-1,3-Dichloropropene
< 0.1	trans-1,3-Dichloropropene
< 0.1	Ethyl Benzene
< 0.5	Methylene Chloride
< 0.4	1,1,2,2-Tetrachloroethane
< 0.4	Tetrachloroethene

ND = Not Detected, limit of
 detection for this
 compound has not been
 fully evaluated.

Toluene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

µg/Kg

< 0.4

< 0.2

< 0.1

< 0.3

< 0.2

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 11-6-84
Sample I.D.: <u>B1-ZY-B1 12'</u>	Date Received by Lab: 11-9-84
Sample Matrix: Soil	Date Analyzed: 12-10-84

μg/Kg	
< 0.2	Benzene
< 0.1	Bromodichloromethane —
< 0.7	Bromoform
< 0.1	Bromomethane
< 0.1	Carbon Tetrachloride
< 0.8	Chlorobenzene
< 0.8	Chloroethane
< 0.2	2-Chloroethylvinylether
< 0.1	Chloroform
< 0.2	Chloromethane
< 0.1	Dibromochloromethane
< 0.4	1,2-Dichlorobenzene
< 0.4	1,3-Dichlorobenzene
< 0.6	1,4-Dichlorobenzene
ND	Dichlorodifluoromethane
< 0.1	1,1-Dichloroethane
< 0.1	1,2-Dichloroethane
< 0.1	l,l-Dichloroethene
< 0.1	trans-1,2-Dichloroethene
< 0.1	1,2-Dichloropropane
< 0.1	cis-1,3-Dichloropropene
< 0.1	trans-1,3-Dichloropropene
< 0.1	Ethyl Benzene
< 0.5	Methylene Chloride
< 0.4	1,1,2,2-Tetrachloroethane
< 0.4	Tetrachloroethene

ND = Not Detected, limit of
 detection for this
 compound has not been
fully evaluated.

Toluene

1,1,1-Trichloroethane
1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Client: Gregg & Associates	Date Collected: 11-6-84
Sample I.D.: <u>B1-ZY-B1 17'</u>	Date Received by Lab: 11-9-84
Sample Matrix: Soil	Date Analyzed: 12-10-84

μg/Kg	_	μg/Kg	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane —	< 0.2	1,1,1-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		. •
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	Chloromethane	VIAL RRO	OKEN IN SHIPMENT
< 0.1	Dibromochloromethane	VIAL BIN	XER IN SHITTLER
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene	ND = Not	Detected, limit of
< 0.6	1,4-Dichlorobenzene		tection for this
ND	Dichlorodifluoromethane		npound has not been Hly evaluated.
< 0.1	1,1-Dichloroethane		•
< 0.1	1,2-Dichloroethane		<i>,</i>
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

µg/Kg

Toluene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 11-6-84
Sample I.D.: B1-ZY-B1 30'	Date Received by Lab: 11-9-84
Sample Matrix: Soil	Date Analyzed: 12-10-84

μg/Kg		ид/К
< 0.2	Benzene	< 0.4
< 0.1	Bromodichloromethane	< 0.2
< 0.7	Bromoform	< 0.1
< 0.1	Bromomethane	< 0.3
< 0.1	Carbon Tetrachloride	ND
< 0.8	Chlorobenzene	< 0.2
< 0.8	Chloroethane	
< 0.2	2-Chloroethylvinylether	
< 0.1	Chloroform	
< 0.2	Chloromethane	
< 0.1	Dibromochloromethane	
< 0.4	1,2-Dichlorobenzene	N
< 0.4	1,3-Dichlorobenzene	
< 0.6	1,4-Dichlorobenzene	
ND .	Dichlorodifluoromethane	
< 0.1	1,1-Dichloroethane	
< 0.1	1,2-Dichloroethane	
< 0.1	1,1-Dichloroethene	
< 0.1	trans-1,2-Dichloroethene	
< 0.1	1,2-Dichloropropane	
< 0.1	cis-1,3-Dichloropropene	
< 0.1	trans-1,3-Dichloropropene	
< 0.1	Ethyl Benzene	
< 0.5	Methylene Chloride	
< 0.4	1,1,2,2-Tetrachloroethane	
18.1	Tetrachloroethene	

ND = Not Detected, Timit of detection for this compound has not been fully evaluated.

01-001667-21

ug/Kg

< 0.4

< 0.2

< 0.1

ND

< 0.2

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 11-6-84
Sample I.D.: B1-ZY-B1 38'	Date Received by Lab: 11-9-84
Sample Matrix: Soil	Date Analyzed: 12-10-84

ug/Kg	
< 0.2	Benzene
< 0.1	Bromodichloromethane
< 0.7	Bromoform
< 0.1	Bromomethane
< 0.1	Carbon Tetrachloride
< 0.8	Chlorobenzene
< 0.8	Chloroethane
< 0.2	2-Chloroethylvinylether
< 0.1	Chloroform
< 0.2	Chloromethane
< 0.1	Dibromochloromethane
< 0.4	1,2-Dichlorobenzene
< 0.4	l,3-Dichlorobenzene
< 0.6	1,4-Dichlorobenzene
ND	Dichlorodifluoromethane
< 0.1	1,1-Dichloroethane
< 0.1	1,2-Dichloroethane
< 0.1	1,1-Dichloroethene
< 0.1	trans-1,2-Dichloroethene
< 0.1	l,2-Dichloropropane
< 0.1	cis-1,3-Dichloropropene
< 0.1	trans-1,3-Dichloropropene
< 0.1	Ethyl Benzene
< 0.5	Methylene Chloride
< 0.4	1,1,2,2-Tetrachloroethane
5.3	Tetrachloroethene

SEPTUM INVERTED

Toluene

1,1,1-Trichloroethane
1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

____ Vinyl Chloride

ND = Not Detected, limit of
 detection for this
 compound has not been
 fully evaluated.

I.D. 01-001685 January 8, 1985

Gregg & Associates, Inc. 18351 Beach Blvd., Suite L Huntington Beach, CA 92647

Project: CALAC

Project Number: 84-106

On November 12, 1984 Analytical Technologies, Inc. received fifteen (15) soil samples for analyses. Volatile organics were analyzed using gas chromatography, in accordance with EPA methods 8010 and 8020. Metals were analyzed by inductively coupled plasma and atomic absorption graphite furnace, in accordance with the EPA 200 series methods. Sulfate was analyzed using ion chromatography; pH and cyanide using EPA wet methods.

Decribed below is the disposition of each sample.

 These samples were composited and analyzed for pH, sulfate, chromium, and sodium.

12' 6" B1-ZC-B1 B1-ZC-B1 17' 6" B1-ZC-B1 25' 6" B1-ZC-B1 40' 6"

These samples were composited and analyzed for volatile organics. California Assessment Manual (CAM), metals, pH, and cyanide.

B1-ZM-B1 10'6" B1-ZM-B1 15' 6" B1-ZM-B1 25' 6" B1-ZM-B1 40' 6"

3) This sample was analyzed for volatile organics.

B1-ZB-B1 5' 6"

These samples were analyzed individually for volatile organics, composited and analyzed for pH, sulfate, cyanide, chromium, and sodium.

B1-ZB-B1 10! 6" B1-ZB-B1 25' 6" B1-ZB-B1 40' 6"

Page 2 Gregg & Associates, Inc.

5) These samples are being held.

B1-ZC-B1 5'6" B1-ZM-B1 5'6" B1-ZB-B1 Jar Sample

BI 25 BI Gut Gump 12

Confirmation of volatile results will follow.

Attached are the test results.

ML: mat

John W. Strand

Sopport Services Manager

Reviewed by

Mark King Laboratory Manager

JWS: mat

Attachments

NOTE: Samples from this project will be disposed of in thirty (30) days from the date of this report, unless we are informed otherwise.

DATA SUMMARY OF CAM LISTED METALS

Client: Gregg & Associates Date Received: 11-12-84

Sample I.D.: B1-ZM-B1 Composite Date Analyzed: 11-15 thru 12-7-84

Sample Matrix: Soil Concentration: milligrams per kilogram

(Circle O ne) mg/L or (mg/Kg)	
< 2.5	Antimony
5.18	Arsenic
42.0	Barium
< 1.0	Beryllium
< 0.5	Cadmium
6.3	Chromium (total)
< 0.5	*Chromium (hexavalent)
5.1	Cobalt
8.9	Copper
_ < 2.5	Lead
0.2	Mercury
11.1	Molybdenum
4.9	Nickel
< 2.5	Selenium
< 2.5	Silver
< 2.5	Thallium
15.8	· Vanadium
13.9	Zinc

*Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Gregg & Associates

I.D. 01-001685

DATA SHEÉT

Sample	<u>Parameter</u>	(mg/kg)*
B1-ZC-B1 Composite	рН	8.44
	Sulfate	11.0
	Chromium (total)	5.7
	Sodium	364
	Chromium (Cr€)	<0.5
B1-ZM-B1 Composite	рН	8.41
	Cyanide	<0.2
B1-ZB-B1 Composite	рН	8.69
	Sulfate	11.0
	Cyanide	<0.2
	Chromium (total)	11.3
	Sodium	590
	Chromium (Cr [€])	<0.5

^{*(}mg/kg) is milligrams per kilogram.

01-001685 (7 thru 10)

Toluene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

μg/Kg

< 0.4

< 0.2

< 0.1

< 0.2

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 11-9-84
Sample I.D.: B1-ZM-B1 Composite	Date Received by Lab: 11-12-84
Sample Matrix: Soil	Date Analyzed: 12-26-84

µg/Кд	
< 0.2	Benzene
< 0.1	Bromodichloromethane
< 0.7	Bromo form
< 0.1	Bromomethane
< 0.1	Carbon Tetrachloride
< 0.8	Chlorobenzene
< 0.8	Chloroethane
< 0.2	2-Chloroethylvinylether
< 0.1	Chloroform
< 0.2	Chloromethane
< 0.1	Dibromochloromethane
< 0.4	1,2-Dichlorobenzene
< 0.4	1,3-Dichlorobenzene
< 0.6	l,4-Dichlorobenzene
ND	Dichlorodifluoromethane
< 0.1	l,1-Dichloroethane
< 0.1	1,2-Dichloroethane
< 0.1	1,1-Dichloroethene
< 0.1	trans-1,2-Dichloroethene
< 0.1	1,2-Díchloropropane
< 0.1	cis-1,3-Dichloropropene
< 0.1	trans-1,3-Dichloropropene
< 0.1	Ethyl Benzene
< 0.5	Methylene Chloride
< 0.4	1,1,2,2-Tetrachloroethane
4.2	Tetrachloroethene

ND = Not Detected, limit of
 detection for this
 compound has not been
fully evaluated.

ug/Kg

< 0.4

< 0.2

< 0.1

< 0.3

ND

< 0.2

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

Client: Grega & Associates	Date Collected: 11-9-84
Sample I.D.: B1-ZB-B1 at 5'	Date Received by Lab: 11-12-84
Sample Matrix: Soil	Date Analyzed: 12-26-84

μg/Kg	
< 0.2	Benzene
< 0.1	Bromodichloromethane
< 0.7	Bromo form
< 0.1	Bromomethane
< 0.1	Carbon Tetrachloride
< 0.8	Chlorobenzene
< 0.8	Chloroethane
< 0.2	2-Chloroethylvinylether
< .0.1	Chloreform
< 0.2	Chloromethane
< 0.1	Dibromochloromethane
< 0.4	1,2-Dichlorobenzene
< 0.4	1,3-Dichlorobenzene
< 0.6	1,4-Dichlorobenzene
סא	Dichlorodifluoromethane
< 0.1	1,1-Dichloroethane
< 0.1	1,2-Dichloroethane
< 0.1	1,1-Dichloroethene
< 0.1	trans-1,2-Dichloroethene
< 0., 1	1,2-Dichloropropane
< 0.1	cis-1,3-Dichloropropene
< 0.1	trans-1,3-Dichloropropene
< 0.1	Ethyl Benzene
< 0.5	Methylene Chloride
< 0.4	1,1,2,2-Tetrachloroethane
4.9	Tetrachloroethene

ND = Not Detected, limit of
 detection for this
 compound has not been
fully evaluated.

Toluene

1,1,1-Trichloroethane
1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

µg/Kg

< 0.4

< 0.2

< 0.1

ND < 0.2

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected:	11-9-84
Sample I.D.: B1-ZB-B1 at 10'	Date Received by Lab:	11-12-84
Sample Matrix: Soil	Date Analyzed:	12-26-84

μg/Kg	
< 0.2	Benzene
< 0.1	Bromodichloromethane
< 0.7	Bromoform
< 0.1	Bromomethane
< 0.1	Carbon Tetrachloride
< 0.8	Chlorobenzene
< 0.8	Chloroethane
< 0.2	2-Chloroethylvinylether
< 0.1	Chloroform
< 0.2	Chloromethane
< 0.1	Dibromochloromethane
< 0.4	1,2-Dichlorobenzene
< 0.4	1,3-Dichlorobenzene
< 0.6	1,4-Dichlorobenzene
ND ND	Dichlorodifluoromethane
< 0.1	l,l-Dichloroethane
< 0.1	1,2-Dichloroethane
< 0.1	l,l-Dichloroethene
< 0.1	trans-1,2-Dichloroethene
< 0.1	1,2-Dichloropropane
< 0.1	cis-1,3-Dichloropropene
< 0.1	trans-1,3-Dichloropropene
< 0.1	Ethyl Benzene
< 0.5	Methylene Chloride
< 0.4	1,1,2,2-Tetrachloroethane
61.0	Tetrachloroethene

ND = Not Detected, limit of
 detection for this
 compound has not been
fully evaluated.

Toluene

1,1,1-Trichloroethane
1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Client: Gregg & Associates	Date Collected: 11-9-84	
Sample I.D.: <u>B1-ZB-B1</u> at 25'	Date Received by Lab: 11-12-84	
Sample Matrix: Soil	Date Analyzed: 12-26-84	

μg/Kg	_	цо/Кд
< 0.2	Benzene ·	< 0.4
< 0.1	Bromodichloromethane	< 0.2
< 0.7	Bromoform	< 0.1
< 0.1	Bromomethane	< 0.3
< 0.1	Carbon Tetrachloride	ND
< 0.8	Chlorobenzene	< 0.2
< 0.8	Chloroethane	
< 0.2	2-Chloroethylvinylether	
< 0.1	Chloroform	••
< 0.2	Chloromethane	
< 0.1	Dibromochloromethane	N.C.
< 0.4	1,2-Dichlorobenzene	ND =
< 0.4	1,3-Dichlorobenzene	
< 0.6	l,4-Dichlorobenzene	
ОИ	Dichlorodifluoromethane	
< 0.1	1,1-Dichloroethane	
< 0.1	1,2-Dichloroethane	
< 0.1	1,1-Dichloroethene	
< 0.1	trans-1,2-Dichloroethene	
< 0.1	1,2-Dichloropropane	
< 0.1	cis-1,3-Dichloropropene	
< 0.1	trans-1,3-Dichloropropene	
< 0.1	Ethyl Benzene	
< 0.5	Methylene Chloride	
< 0.4	1,1,2,2-Tetrachloroethane	
14.2	Tetrachloroethene	

ND = Not Detected, limit of detection for this compound has not been fully evaluated.

Toluene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Client: Gregg & Associates	Date Collected:	11-9-84
Sample I.D.: <u>B1-ZB-B1</u> at 25'	Date Received by L	ab: 11-12-84
Sample Matrix: Soil	Date Analyzed:	12-26-84

μg/Kg		ug/Kg	
< 0.2	- Benzene	< 0.4	— Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichloroethane
< 0.7	Bromo form	< 0.1	1,1,2-Trichloroethane
< 0.1	- Bromomethane	< 0.3	Trichloroethene
< 0.1	- Carbon Tetrachloride	ND	— Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	— Vinyl Chloride
< 0.8	- Chloroethane		
< 0.2	- 2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	- Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		ot Detected, limit of
< 0.4	1,3-Dichlorobenzene		etection for this
< 0.6	- l,4-Dichlorobenzene		ompound has not been
ND	Dichlorodifluoromethane	f	ully evaluated.
< 0.1	l,l-Dichloroethane		
< 0.1	l,2-Dichloroethane		,
< 0.1	l,l-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	_ 1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	_ trans-1,3-Dichloropropene		
< 0.1	_ Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
13.1	Tetrachloroethene	•	

Client: Gregg & Associates	Date Collected: 11-9-84
Sample I.D.: <u>B1-7B-B1 at 40'</u>	Date Received by Lab: 11-12-84
Sample Matrix: Soil	Date Analyzed: 12-26-84

ug/Kg	_	ца/Ка	_
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	- l,l,l-Trichloro
< 0.7	Bromoform	< 0.1	l,1,2-Trichloro
< 0.1	Bromomethane	< 0.3	- Trichloroethene
< 0.1	Carbon Tetrachloride	ND	- Trichlorofluoro
< 0.8	Chlorobenzene	< 0.2	- Vinyl Chloride
< 0.8	Chloroethane		-
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2 -	Chloromethane		
< 0.1	Dibromochloromethane	ND - No	t Detected, limi
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		tection for this
< 0.6	1,4-Dichlorobenzene		mpound has not b
ND	Dichlorodifluoromethane	tu	lly evaluated.
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene	·	
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		

Tetrachloroethene

301,000

= Not Detected, limit of detection for this compound has not been fully evaluated.

l,I,l-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichlorofluoromethane

01-001685 -SPIKE

Client: Gregg & Associates Sample I.D.: Spike Sample Matrix: Soil

Date Collected: 11-9-84
Date Received by Lab: 11-12-84
Date Analyzed: 12-26-84

% Recovery	
95.7	Bromodichloromethane
92.2	Carbon Tetrachloride
91.3	Chlorobenzene
94.7	Chloroethane
97.6	2-Chloroethylvinylether
102	Chloroform
85.3	Chloromethane
94.3	1,2 Dichloroethane
105	1,1 Dichloroethane
86.3	trans 1,2 Dichloroethene
91.9	cis 1,3 Dichloropropene
91.3	1,1,1-Trichloroethane
106	Trichloroethene

Corporate Offices 225 W. 30th Street National City, CA 92050 619 477-4173

I.D. 01-001685

January 31, 1985

Gregg & Associates, Inc. 18351 Beach Blvd., Suite L Huntington Beach, CA 92647

Attention: Ed Baquerizo

Listed below are gas chromatograph/mass spectrometer confirmation of the volatile organics present in samples B1-ZB-B1 at 10 and 40 feet.

B1-ZB-B1 10' B1-ZB-B1 40' TETRACHLOROETHENE TETRACHLOROETHENE

Nohn W. Strand Support Services Manager

Reviewed by

Laboratory Mapager

ML:mat

I.D. 01-001686

Gregg and Associates 18351 Beach Blvd. Suite "L" Huntington Beach, CA 92647

Project: CALAC Project No: 84-106

On November 13, 1984 Analytical Technologies, Inc. received twenty seven (27) soil samples for analyses. Volatile organics were analyzed using gas chromatography in accordance with EPA methods 8010 and 8020. California Assessment Manual (CAM) metals were analyzed by acid digesting soil aliquots, and analyzing the digest using either inductively coupled plasma or atomic absorption inductively coupled plasma or atomic absorption graphite furnace, in accordance with the EPA 200 series methods. Petroleum hydrocarbons and oil and grease, were analyzed by extracting soil aliquots with freon, then analyzing the extracts by infrared spectrophotometry, in accoradance with EPA method 418.1. Cyanide and pH were analyzed in accordance with EPA wet methods.

Listed below is the disposition of each sample.

1) This sample was analyzed for petroleum hydrocarbons

These samples were composited and analyzed for volatile organics, CAM metals, pH, and cyanide.

```
B(-A(5, B)
B1-AN-B1 6" at 10'
B1-AN-B1 6" at 15'
B1-AN-B1 6" at 30'
B1-AN-B1 6" at 40'
```

These samples were composited and analyzed for volatile organics, CAM metals), pH, and cyanide.

4) This sample was analyzed for oil and grease and pH.

These samples were analyzed individually for CAM Metals.

```
B1-AK-B1 6" at 10'
B1-AK-B1 6" at 40'
          6" at 10'
B1-AJ-B1
B1-AJ-B1 6" at 40'
```


Page 2

I.D. 01-001686

6) These samples were analyzed individually for volatile organics, pH, and oil and grease.

```
B1-AK-B1 6" at 5'
B1-AK-B1 6" at 10'
B1-AK-B1 6" at 15'
B1-AK-B1 6" at 30'
B1-AK-B1 6" at 40'
B1-AJ-B1 6" at 5'
B1-AJ-B1 6" at 10'
B1-AJ-B1 6" at 15'
```

7) These samples were analyzed individually for volatile organics and oil and grease.

```
Bl-AJ-Bl 6" at 30'
Bl-Aj-Bl 6" at 40'
```

8) These samples were composited and analyzed for volatile organics, pH, and petroleum hydrocarbons.

```
Bl-AL-Bl 6" at 12'
Bl-AL-Bl 6" at 18'
Bl-AL-Bl 6" at 25'
Bl-AL-Bl 6" at 40'
```

9) These samples are being held

```
B1-AN-B1 6" at 5'
B1-AP-B1 6" at 5'
B1-AL-B1 6" at 5'
```

Attached are the test results.

John Strand

Services Support Manager

24 W. Shano

Reviewed by

Mark/King

Laboartory Manager

JS/br

01-001686 (3 thru 6)

DATA SUMMARY . OF CAM LISTED METALS

Client: Gregg & Associates	Date Received: 11-18-84
Sample I.D.: B1-AN-B1 Composite	Date Analyzed: 11-26 thur 12-7
Sample Matrix: Soil	Concentration: Total (TTLC)

(Circle One) mg/L or mg/Kg	
< 2.5	Antimony
10.8	Arsenic
62.8	Barium
1.1	Beryllium
< 0.5	Cadmium
7.9	Chromium (total)
< 0.5	*Chromium (hexavalent)
8.1	Cobalt
10.2	Copper
< 2.5	Lead
0.4	Mercury
16.7	Molybdenum
7.1	Nickel
< 2.5	Selenium
< 2.5	Silver
< 2.5	Thallium
26.0	Vanadium
25.9	Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

DATA SUMMARY OF CAM LISTED METALS

01-001686 (8 thru 11)

Client: Gregg & Associates	Date Received:_	11/13/84
Sample I.D.: Bl-Ag-Bl Composite	Date Analyzed:	11/26 thur 12/7
Sample Matrix: Soil	Concentration:	Total (TTLC)

Antimony Arsenic
Arsenic
Barium
Beryllium
Cadmium
Chromium (total)
*Chromium (hexavalent)
Cobalt
Copper
Lead
Mercury
Molybdenum
Nickel
Selenium
Silver
Thallium
Vanadium
Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

DATA SUMMARY OF CAM LISTED METALS

01-001686-14

Client: Gregg & Associates

Date Received: 11/13/84

Sample I.D.: B1-AK-B1 6" at 10'

Sample Matrix: Soil

Concentration: Total (TTLC)

(Circle One) mg/L or mg/Kg	. •
< 2.5	Antimony
6.7	Arsenic
40.3	Barium
< 1.0	Beryllium
< 0.5	Cadmium
5.9	Chromium (total)
	*Chromium (hexavalent)
1.9	Cobalt
5.3	Copper
< 2.5	Lead
< 0.1	Mercury
4.4	Molybdenum
3.7	Nickel
< 2.5	Selenium
< 2.5	Silver
< 2.5	Thallium
11.9	Vanadium
20-2	Zinc

*Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

DATA SUMMARY

01-001686-17

OF CAM LISTED METALS

Client: Gregg & Associates	Date Received: 11/13/84
Sample I.D.: B1-AK-B1 6" at 40'	Date Analyzed: 11/26 thur 12/7
Sample Matrix: Soil	Concentration: Total (TTLC)

(Circle One) mg/L or mg/Kg	
< 2.5	Antimony
21.9	Arsenic
186	Barium
1.0	Beryllium
< 0.5	Cadmium
24.7	Chromium (total)
< 0.5	*Chromium (hexavalent)
12.0	Cobalt
28.0	Copper
3.5	Lead
< 0.1	Mercury
24.0	Molybdenum
20.0	Nickel
< 2.5	Selenium
<2.5	Silver
	Thallium
43.8	Vanadium
67.7	Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

DATA SUMMARY

01-001686-19

OF CAM LISTED METALS

Client:	Gregg & Associates	Date Received:	11/13/84
Sample	I.D.: Bl-Aj-Bl 6" at 10'	Date Analyzed:	11/26 thru 12/7
Sample	Matrix: Soil	Concentration:	Total (TTLC)

(Circle One) mg/L or mg/Kg	
< 2.5	Antimony
8.95	Arsenic
58.6	Barium
< 1.0	Beryllium
< 0.5	Cadmium
8.6	Chromium (total)
< 0.5	*Chromium (hexavalent)
1,4	Cobalt
9.2	Copper
< 2.5	Lead
< 0.1	Mercury
4_0	Molybdenum
6.8	Nickel
< 2.5	Selenium
< 2.5	Silver
< 2.5	Thallium
19_6	Vanadium
23_5	Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

DATA SUMMARY

01-001686-22

OF CAM LISTED METALS:

Client: Gregg & Associates

Date Received: 11-13-84

Sample I.D.: B1-AJ-B1 6" at 40'

Date Analyzed: 11-26 thru 12-7

Concentration: Total (TTLC)

(Circle One) mg/L or mg/Kg Antimony < 2.5 Arsenic 13.5 Barium _103 Beryllium Cadmium < 0.5 Chromium (total) 14.4 *Chromium (hexavalent) < 0.5 Cobalt Copper 13.9 Lead < 25 < 0.1 Mercury 13.9 Molybdenum 12.2 Nickel . < 2.5 Selenium < 2.5 Silver Thallium < 2.5 Vanadium ___33.1 Zinc 44.2

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Gregg & Associates

01-001686

DATA SHEET

Sample	Parameter	_mg/kg*
3		
1 B1-F8-MV1 6" at 12'	Petroleum Hydrocarbons	5.3
3-6 Bl-AN-Bl Composite	pH Cyanide	8.18 <0.2
8-11 B1-AP-B1 Composite	pH Cyanide	8.87 <0.2
12 Bl-A#-MVl 6" at 12'	pH Oil and Grease	8.54 2.7
24-27 Bl-AL-Bl Composite	pH Petroleum Hydrocarbons	8.30 <0.5
21 B1-AJ-B1 6" at 30'	Oil and Grease	<0.5
22 B1-AJ-B1 6" at 40'	Oil and Grease	<0.5
Sample	Oil and Grease (mg/kg)	pH (units)
13 B1-AK-B1 6" at 5'	4.2	8.32
14 B1-AK-B1 6" at 10'	7.7	7.82
15 B1-AK-B1 6" at 15'	0.8	7.50
16 B1-AK-B1 6" at 30'	0.8	8.84
17 Bl-AK-Bl 6" at 40'	< 0.5	8.77
18 B1-AJ-B1 6" at 5'	0.8	8.47
19 B1-AJ-B1 6" at 10'	1.1	7.74
20 Bl-Aj-Bl 6" at 15'	0.8	8.07

 $[\]star$ mg/kg is milligrams per kilograms

01-001686 -(3 thru 6)

Client: Gregg & Associates	Date Collected: 11-12-84
Sample I.D.: Bl-AN-Bl composite	Date Received by Lab: 11-13-84
Sample Matrix: Soil	Date Analyzed: 12-31-84

μg/Kg	-	цg/Kg	
< 0.2	Benzene _	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	l,l.Trichloroethane
< 0.7	Bromo form _	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane _	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		, '
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		N.D. Not Detected, limit of detection for this
< 0.1	cis-1,3-Dichloropropene		compound has not been ful
< 0.1	trans-1,3-Dichloropropene		evaluated.
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		

1,1,2,2-Tetrachloroethane

Tetrachloroethene

< 0.4

< 0.4

.D. Not Detected, limit f detection for this ompound has not been fully valuated.

VOLATILE ORGANIC ANALYSIS DATA SUMMARY

01-001686 - (8 thru 11)

(EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 11-12-84
Sample I.D.: <u>Bl-AP-Bl composite</u>	Date Received by Lab: 11-13-84
Sample Matrix: Soil	Date Analyzed: 12-31-84

µg/Кд		µg/Kg	-
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichloroethane
< 0.7	8 romo form	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	_ 1,2-Dichlorobenzene		
< 0.4	_ l,3-Dichlorobenzene		
< 0.6	_ l,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	l,1-Dichloroethane		
< 0.1	_ 1,2-Dichloroethane		,
< 0.1	l,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	l,2-Dichloropropane		N.D. Not Detected, limit of detection for this
< 0.1	cis-1,3-Dichloropropene		compound has not been ful
< 0.1	trans-1,3-Dichloropropene		evaluated.

< 0.1

< 0.5

< 0.4

< 0.4

Ethyl Benzene

Methylene Chloride

Tetrachloroethene

1,1,2,2-Tetrachloroethane

ted, limit r this t been fully

01-001686 -13

Toluene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

(EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 11-12-84
Sample I.D.: Bl-AK-Bl 5'	Date Received by Lab: 11-13-84
Sample Matrix: Soil	Date Analyzed: 12-31-84

μg/Kg

< 0.4

< 0.2

< 0.1

< 0.2

µg/Kg	
< 0.2	Benzene
< 0.1	Bromodichloromethane
< 0.7	Bromoform
< 0.1	Bromomethane
< 0.1	Carbon Tetrachloride
< 0.8	Chlorobenzene
< 0.8	Chloroethane
< 0.2	2-Chloroethylvinylether
< 0.1	Chloroform
< 0.2	Chloromethane
< 0.1	Dibromochloromethane
< 0.4	1,2-Dichlorobenzene
< 0.4	l,3-Dichlorobenzene
< 0.6	l,4-Dichlorobenzene
ND	Dichlorodifluoromethane
< 0.1	l,l-Dichloroethane
< 0.1	1,2-Dichloroethane
< 0.1	1,1-Dichloroethene
< 0.1	trans-1,2-Dichloroethene
< 0.1	1,2-Dichloropropane
< 0.1	cis-1,3-Dichloropropene
< 0.1	trans-1,3-Dichloropropene
< 0.1	Ethyl Benzene
< 0.5	Methylene Chloride
< 0.4	1,1,2,2-Tetrachloroethane
0 4	T. A

Tetrachloroethene

N.D. Not Detected, limit of detection for this compound has not been fully evaluated.

DUPLICATE

VOLATILE ORGANIC ANALYSIS DATA SUMMARY

01-001686-13

(EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 11-12-84
Sample I.D.:	Date Received by Lab: 11-13-84
Sample Matrix: Soil	Date Analyzed: 12-31-84

μg/Kg		ug/Kg	·
< 0.2	_ Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform ·		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		•
< 0.4	1,3-Dichlorobenzene		•
< 0.6	_ 1,4-Dichlorobenzene		
מא	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		·
< 0.1	_ l,l-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene	•	
< 0.1	_ 1,2-Dichloropropane		N.D. Not Detected, limi of detection for this
< 0.1	cis-1,3-Dichloropropene		compound has not been fu
< 0.1	trans-1,3-Dichloropropene		evaluated.
< 0.1	Ethyl Benzene		
2.5			

Methylene Chloride

Tetrachloroethene

1,1,2,2-Tetrachloroethane

< 0.5

< 0.4

< 0.4

N.D. Not Detected, limit of detection for this compound has not been fully evaluated.

01-001686 14

Client: Gregg & Associates	Date Collected: 11-12-84
Sample I.D.: B1-A22-B1 10'	Date Received by Lab: 11-13-84
Sample Matrix: Soil	Date Analyzed: 12-31-84

ug/Kg	-	ug/Kg	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	
< 0.7	Bromo form	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		N.D. Not Detected, limit of detection for this
< 0.1	• • • •		compound has not been ful
< 0.1	trans-1,3-Dichloropropene		evaluated.
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		

1,1,2,2-Tetrachloroethane

Tetrachloroethene

< 0.4

N.D. Not Detected, limit of detection for this compound has not been fully evaluated.

VOLATILE ORGANIC ANALYSIS DATA SUMMARY

01-001686 -15

(EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 11-12-84
Sample I.D.: <u>B1-AK-B1 15'</u>	Date Received by Lab: 11-13-84
Sample Matrix: Soil	Date Analyzed: 12-31-84

µa/Kq	_	ug/Kg	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichloroethane
< 0.7	8romoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichlorsethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< C.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		•
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
	Dichlorodifluoromethane		
< 0.1	l,l-Dichloroethane		·*
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene	•	
< 0.1	l,2-Dichloropropane		N.D. Not Detected, limit of detection for this
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		evaluated.
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		

Tetrachloroethene

< 0.4

N.D. Not Detected, limit of detection for this compound has not been fully evaluated.

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (504 METHOD 2010 A 2000)

Duplicate 01-001686

(EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 11-12-84
Sample I.D.: B1-AK-43615'	Date Received by Lab: 11-13-84
Sample Matrix: Soil	Date Analyzed: 12-31-84

μg/Kg	-	μg/Kg	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichloroethane
< 0.7	_ Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2			

- 0.1	
< 0.7	Bromoform
< 0.1	Bromomethane
< 0.1	Carbon Tetrachloride
< 0.8	Chlorobenzene
< 0.8	Chloroethane
< 0.2	2-Chloroethylvinylether
< 0.1	Chloroform
< 0.2	Chloromethane
< 0.1	Dibromochloromethane
< 0.4	1,2-Dichlorobenzene
< 0.4	l,3-Dichlorobenzene
< 0.6	1,4-Dichlorobenzene
DN	Dichlorodifluoromethane
< 0.1	1,1-Dichloroethane
< 0.1	1,2-Dichloroethane
< 0.1	1,1-Dichloroethene
< 0.1	trans-1,2-Dichloroethene
< 0.1	1,2-Dichloropropane
< 0.1	cis-1,3-Dichloropropene
< 0.1	trans-1,3-Dichloropropene
< 0.1	Ethyl Benzene
< 0.5	Methylene Chloride
< 0.4	1,1,2,2-Tetrachloroethane
< 0.4	Tetrachloroethene

N.D. Not Detected, limit of detection for this compound has not been fully evaluated.

01-001686

(EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 11-12-84
Sample I.D.: B1-AK-B1 30'	Date Received by Lab: 11-13-84
Sample Matrix: Soil	Date Analyzed: 12-31-84

µg/Kg	_	ug/Kg	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		*
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		N.D. Not Detected, limit of detection for this
< 0.1	_ cis-1,3-Dichloropropene		compound has not been fully
< 0.1	_ trans-1,3-Dichloropropene		evaluated.
< 0.1	_ Ethyl Benzene		

Methylene Chloride

Tetrachloroethene

1,1,2,2-Tetrachloroethane

< 0.4

< 0.4

01-001686-17

(EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 11-12-84
Sample I.D.: B1-AK-B1 40'	Date Received by Lab: 11-13-84
Sample Matrix: Soil	Date Analyzed: 12-31-84

μα/Kg	· -	ug/Kg	-
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	_ 1,1,1-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	NDND	Trichlorofluoromethane
< 0.8	Chlorobenzene < 0.2 Vinyl Chloride		_ Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	Chloromethane		

Dibromochloromethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

1,2-Dichloropropane

Ethyl Benzene

Methylene Chloride

Tetrachloroethene

Dichlorodifluoromethane

trans-1,2-Dichloroethene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

1,1,2,2-Tetrachloroethane

< 0.1

< 0.4

< 0.4

< 0.5

ИÐ

< 0.1

< 0.1

< G.1

< 0.1

< 0.1

< 0.1

< 0.1

< 0.1

< 0.5

< 0.4

< 0.4

N.D. Not Detected, limit of detection for this compound has not been fully evaluated.

01-001686-18

Client: Gregg & Associates	Date Collected: 11-12-84
Sample I.D.: Bl-AJ-Bl 5'	Date Received by Lab: 11-13-84
Sample Matrix: Soil	Date Analyzed: 12-31-84

μg/Kg	_	μg/Kg	·
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether	-	
< 0.1	_ Chloroform		
< 0.2	Chloromethane		
< 0:1	_ Dibromochloromethane		•
< 0.4	1,2-Dichlorobenzene		
< 0.4	l,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	l,l-Dichloroethane		<i>y</i>
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		
< 0.1	_ trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		N.D. Not Detected, limit of detection for this
< 0.1	cis-1,3-Dichloropropene		compound has not been ful
< 0.1	trans-1,3-Dichloropropene		evaluated.
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		

ected, limit for this not been fully

1,1,2,2-Tetrachloroethane

Tetrachloroethene

< 0.4

< 0.4

01-001686-19

(EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 11-12-84
Sample I.D.: B1-AJ-B1 10'	Date Received by Lab: 11-13-84
Sample Matrix: Soil	Date Analyzed: 12-31-84

-	ца/Ка	
Benzene	< 0.4	Toluene
Bromodichloromethane	< 0.2	l,l,l-Trichloroethane
Bromoform _	< 0.1	1,1,2-Trichloroethane
Bromomethane	< 0.3	Trichloroethene
Carbon Tetrachloride	ND	Trichlorofluoromethane
Chlorobenzene	< 0.2	Vinyl Chloride
Chloroethane		
2-Chloroethylvinylether		
Chloroform		
Chloromethane		
Dibromochloromethane		
1,2-Dichlorobenzene		
1,3-Dichlorobenzene		
1,4-Dichlorobenzene		
Dichlorodifluoromethane		
1,1-Dichloroethane		,
1,2-Dichloroethane		·
1,1-Dichloroethene		
trans-1,2-Dichloroethene		
1,2-Dichloropropane		N.D. Not Detected, limit of detection for this
cis-1,3-Dichloropropene		compound has not been ful
trans-1,3-Dichloropropene		evaluated.
Ethyl Benzene		
Methylene Chloride		
	Bromodichloromethane Bromo form Bromomethane Carbon Tetrachloride Chlorobenzene Chloroethane 2-Chloroethylvinylether Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethyl Benzene	Benzene < 0.4 Bromodichloromethane < 0.2 Bromo form < 0.1 Bromomethane < 0.3 Carbon Tetrachloride ND Chlorobenzene < 0.2 Chloroethane 2-Chloroethylvinylether Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethyl Benzene

N.D. Not Detected, limit of detection for this compound has not been fully evaluated.

1,1,2,2-Tetrachloroethane

Tetrachloroethene

< 0.4

< 0.4

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

01-001686 -20

Client: Gregg & Associates	Date Collected: 11-12-84
Sample I.D.: <u>Bl-AJ-Bl 15'</u>	Date Received by Lab: 11-13-84
Sample Matrix: Soil	Date Analyzed: 12-31-84.

μg/Kg		ид/Ка	<u>-</u>
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichloroethane
< 0.7	B romo form	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform	,	
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.5	1,4-Dichlorobenzene		
ND_	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		

trans-1,2-Dichloroethene

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

1,1,2,2-Tetrachloroethane

1,2-Dichloropropane

Methylene Chloride

Tetrachloroethene

Ethyl Benzene

< 0.1

< 0.1

< 0.1

< 0.1 < 0.1

< 0.5

< 0.4

< 0.4

N.D. Not Detected, limit of detection for this compound has not been fully evaluated.

01-001686-21

Toluene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

Client: Gregg & Associates Date
Sample I.D.: B1-AJ-B1 30' Date

Date Collected: 11-12-84

μg/Kg

< 0.4

< 0.2

< 0.3

< 0.2

Date Received by Lab: 11-13-84

Sample Matrix: Soil Date Analyzed: 12-31-84

μg/Kg	·
< 0.2	Benzene
< 0.1	Bromodichloromethane
< 0.7	Bromoform
< 0.1	Bromomethane
< 0.1	Carbon Tetrachloride
< 0.8	Chlorobenzene
< 0.8	Chloroethane
< 0.2	2-Chloroethylvinylether
< 0.1	Chloroform
< 0.2	Chloromethane
< 0.1	Dibromochloromethane
< 0.4	1,2-Dichlorobenzene
< 0.4	1,3-Dichlorobenzene
< 0.6	l,4-Dichlorobenzene
ND	Dichlorodifluoromethane
< 0.1	l,l-Dichloroethane
< 0.1	1,2-Dichloroethane
< 0.1	l,l-Dichloroethene
< 0.1	trans-1,2-Dichloroethene
< 0.1	1,2-Dichloropropane
< 0.1	cis-1,3-Dichloropropene
< 0.1	trans-1,3-Dichloropropene
< 0.1	Ethyl Benzene
< 0.5	Methylene Chloride
< 0.4	1,1,2,2-Tetrachloroethane
< 0.4	Tetrachloroethene

N.D. Not Detected, limit of detection for this compound has not been fully evaluated.

01-001686 -22

(EPA METHOD 8010 & 8020)

Client: Gregg & Associates	Date Collected: 11-12-84
Sample I.D.: <u>Bl-AJ-Bl 40'</u>	Date Received by Lab: 11-13-84
Sample Matrix: Soil	Date Analyzed: 12-31-84

μg/Kg	_	цд/Кд	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichloroethane
< 0.7	Bromo form	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chlore form		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		·
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		N.D. Not Detected, limit of detection for this
< 0.1	cis-1,3-Dichloropropene		compound has not been fully
< 0.1	trans-1,3-Dichloropropene		evaluated.
< 0.1	Ethyl Benzene		

21

Methylene Chloride

Tetrachloroethene

1,1,2,2-Tetrachloroethane

< 0.5

< 0.4

01-001686 (24 through 27)

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

Toluene

Client: Gregg & Associates	Date Collected: 11-12-84
Sample I.D.: Bl-AL-Bl composite	Date Received by Lab: 11-13-84
Sample Matrix: Soil	Date Analyzed: 12-31-84

µg/Kg		μg/Kg
	Ponzono	
< 0.2	Benzene	< 0.4
< 0.1	Bromodichloromethane	< 0.2
< 0.7	Bromo form	< 0.1
< 0.1	Bromomethane	< 0.3
< 0.1	Carbon Tetrachloride	ND
< 0.8	Chlorobenzene	< 0.2
< 0.8	Chloroethane	
< 0.2	2-Chloroethylvinylether	
< 0.1	Chloroform	
< 0.2	Chloromethane	
< 0.1	Dibromochloromethane	
< 0.4	1,2-Dichlorobenzene	
< 0.4	1,3-Dichlorobenzene	
< 0.5	1,4-Dichlorobenzene	
ND	Dichlorodifluoromethane	
< 0.1	1,1-Dichloroethane	
< 0.1	1,2-Dichloroethane	
< 0.1	l,l-Dichloroethene	•
< 0.1	trans-1,2-Dichloroethene	
< 0.1	1,2-Dichloropropane	
< 0.1	cis-1,3-Dichloropropene	•
< 0.1	trans-1,3-Dichloropropene	
< 0.1	Ethyl Benzene	
< 0.5	Methylene Chloride	
< 0.4	1,1,2,2-Tetrachloroethane	
< 0.4	Tetrachloroethene	

N.D. Not Detected, limit of detection for this compound has not been fully evaluated.

been fully

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 8010 & 8020)

01-001686 -Spike

Sample I.D.: Sp	Date	Received by	Lab: 11-13-84		
Sample Matrix:	Soil Date	Analyzed:	12-31-84		
% Recovery	o 	& Recovery			
	- Benzene		Toluene		
91.1	Bromodichloromethane		l,l,l-Trichloroethane		
	Bromoform	95.2.	i,1,2-Trichloroethane		
	Bromomethane	101	Trichloroethene		
98.1	Carbon Tetrachloride		Trichlorofluoromethan		
89.7	Chlorobenzene	101	Vinyl Chloride		
	Chloroethane				
	2-Chloroethylvinylether				
109	Chloroform				
	_ Chloromethane				
	Dibromochloromethane				
	1,2-Dichlorobenzene				
	1,3-Dichlorobenzene				
	1,4-Dichlorobenzene				
	_ Dichlorodifluoromethane				
	_ 1,1-Dichloroethane		· · · · · · · · · · · · · · · · · · ·		
97.5	_ 1,2-Dichloroethane				
99.5	_ 1,1-Dichloroethene				
100	trans-1,2-Dichloroethene		N D - New D-44-3 34-		
	_ 1,2-Dichloropropane		N.D. Not Detected, lim of detection for this		
	cis-1,3-Dichloropropene		compound has not been f		
	trans-1,3-Dichloropropene		evaluated.		
97.8	Ethyl Benzene				
95.5	Methylene Chloride				

1,1,2,2-Tetrachloroethane

Tetrachloroethene

92.2

I.D. 01-001693

January 8, 1985

Gregg & Associates 18361 Beach Blvd. Suite "L" Huntington Beach, CA 92647

Project: CALAC

Project No: 84-106

On November 15, 1984 Analytical Technologies, Inc. received ten (10) soil samples, in brass tubes, for analyses. Volatile organics were analyzed by gas chromatography, in accordance with EPA methods 8010 and 8020. California Assessment Manual (CAM) metals were analyzed by acid digesting aliquots of soil, and analyzing the digests by atomic absorbtion graphite furnace and inductively coupled plasma, in accordance with the EPA 200 series methods. Aluminum was analyzed for by extracting soil aliquots with citric acid for 24 hours, then analyzing the extracts using inductively coupled plasma. Cyanide and pH were analyzed according to EPA wet methods.

Described below is the disposition of each sample.

These samples were analyzed individually for pH, chromium, and cyanide

```
B1-ZG-B1 6" at 5'
B1-ZG-B1 6" at 10'
B1-ZG-B1 6" at 15'
B1-ZG-B1 6" at 25'
B1-ZG-B1 6" at 40'
```

2) These samples were analyzed individually for volatile organics, pH, CAM metals, and extractable aluminum.

```
B6- Background 6" at 5'
B6- Background 6" at 10'
B6- Background 6" at 20'
B6- Background 6" at 30'
B& Background 6" at 40'
```

These samples were analyzed individually for volatile organics.

Page 2

#6 #7 #8 #9 #10

Confirmation of the volatile organic results will follow.

Mikayo Langhofer Technical Associate Reviewed by

Laboratory Manager

ML/br

Enclosures

GREGG & ASSOCIATES

01-001693

	Concentration (mg/kg)**
Sample	Parameter

	рН	Ch romi um	Cyanide
B1-ZG-B1 6" at 5'	8.03	1.2	< 0.2
B1-ZG-B1 6" at 10'	7.60	6.0*	< 0.2
B1-ZG-B1 6" at 15'	8.54	2.6	< 0.2
B1-ZG-B1 6" at 25'	8.33	1.0	< 0.2
B1-ZG-B1 6" at 40'	8.15	3.8	< 0.2
	рH	Extractable Aluminum	Oil and Grease
B6 Background 6" at 5'	8.23	25.3	3.1
B6 Background 6" at 10'	8.20	19.2	< 1.0
B6 Background 6" at 20'	8.34	23.6	< 1.0
B6 Background 6" at 30'	7.72	13.7	< 1.0
B6 Background 6" at 40'	8.44	12.6	< 1.0

^{*} The amount of hexavalent chromium in this sample was below detection limits (0.5~mg/kg)

^{**(}mg/kg) is milligram per kilogram

Corporate Offices, 225 W. 30th Street: National City, CA 92050 1519 477-4173

I.D. 01-001715

January 3, 1985

PECEINED INTO UNITED

Gregg & Associates, Inc. 18351 Beach Blvd., Suite L Huntington Beach, CA 92647

Project: Lockheed

Project Number: 84-106

On November 20, 1984 Analytical Technologies, Inc. received nine (9) soil samples for analyses. Volatile organics were analyzed using gas chromatography, in accordance with EPA methods 8010 and 8020. Oil and grease were analyzed by extracting the soil with freon and analyzing the extract by infrared spectrophotometry, in accordance with EPA method 418.1. California Assessment Manual (CAM) metals were analyzed by acid digesting a soil sample, then analyzing the extract using inductively coupled plasma or atomic absorption graphite furnace, in accordance with the EPA SW - 846 methods. Cyanide and pH were analyzed by EPA wet methods.

Described below is the disposition of each sample.

1) These samples were composited and analyzed for pH, chromium, and cyanide.

B1-ZF-SL1 0-10' B1-ZF-SL1 15' B1-ZF-SL1 28'

2) These samples were composited and analyzed for volatile organics and oil and grease.

B1-ZJ-SL1 8' B1-ZJ-SL1 15' B1-ZJ-SL1 30'

3) These samples were composited and analyzed for volatile organics, CAM metals, and pH.

B1-AC-SL1 0-10' B1-AC-SL1 15' B1-AC-SL1 30'

I.D. 01-001715 Gregg & Associates, Inc. Page 2

Attached are the test results.

Sohn W. Strand

Support Services Manager

Reviewed by

Laboratory Manager

JWS:mat

Attachments

NOTE: Samples from this project will be disposed of in thirty (30) days from the date of this report, unless we are informed

otherwise.

I.D. 01-001715

DATA SHEET

<u>Sample</u>	Parameter	Concentration (mg/kg)*
B1-ZF-SL1 Composite	pH Chromium (total) Chromium (Cr ⁶) Cyanide	9.95 8.5 <0.5 <0.05
B1-ZJ-SL1 Composite	Oil & Grease	20.1

^{* (}mg/kg) is milligrams per kilogram

Client: Gregg & Associates	Date Received:_	11-20-84
Sample I.D.: B1-AC-SL1 Composite		11-20 thru 12-5-84
Sample Matrix: Soil	Concentration:_	milligrams per kilogram

(Circle One) mg/L or mg/Kg)		
<2.5	Antimony	
9.1	Arsenic	
57.1	Barium	
1.0	Beryllium	n
0.9	Cadmium	
15.5	Chromium	(total)
0.85	*Chromium	(hexavalent)
3.9	Cobalt	-
8_3	Copper	
4.92	Lead	
<0.1	Mercury	
9.1	Molybdeni	ım
6.3	Nickel	
<2.5	Selenium	
<2.5	Silver	
<2.5	Thallium	
15.9	Vanadium	
39.0	Zinc	
8.91	рН	

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client:	Gregg & Associates	Date Collected: 11-20-84	
Sample	I.D.: B1-ZJ-SL1 Composite	Date Received by Lab: 11-20-84	
Sample	Matrix: Soil	Date Analyzed: 12-18-84	

μg/Kg	-	ug/Kg	-
< 0.2	Benzene	< 0.4	_ Toluene
< 0.1	Bromodichloromethane	< 0.2	_ 1,1,1-Trichloroethane
< 0.7	Bromo form	< 0.1	
< 0.1	Bromomethane	< 0.3	_ Trichloroethene
< 0.1	Carbon Tetrachloride	ND	_ Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	_ Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		,
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene	•	
< 0.1	1,2-Dichloropropane		,
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

Client: Gregg & Associates	Date Collected: 11-20-84
Sample I.D.: B1-ZJ-SL1 Composite	Date Received by Lab: 11-20-84
Sample Matrix: Soil	Date Analyzed: 12-18-84

µa/Kg	-	µg/Kg	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND.	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform	· -	
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
N D	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		,
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane	•	
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		

Tetrachloroethene

< 0.4

Client: Gregg & Associates	Date Collected: 11-20-84
Sample I.D.: B1-AC-SL1 Composite	Date Received by Lab: 11-20-84
Sample Matrix: Soil	Date Analyzed: 12-18-84

ug/Kg	_	ид/Кд	_
< 0.2	Benzene	< 0.4	_ Toluene
< 0.1	Bromodichloromethane	< 0.2	_ l,l,l-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	_ Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	_ Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether	-	
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		,
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		
< 0.4	Tetrachloroethene		

I.D. 01-001746

January 10, 1985

Gregg & Associates, Inc. 18351 Beach Blvd., Suite L Huntington Beach, CA 92647

Project: CALAC

Number: 84106

On December 3, 1984 Analytical Technologies, Inc. received twenty-six (26) liquid samples (water, water and oil, and oil) and four (4) soil samples for analyses. Volatile organic analyses was requested, however the samples were improperly sampled. Ed Baquerizo was contacted, and the samples were resubmitted on December 13, 1984. Volatile organic analyses results are reported in Analytical Technologies, Inc. report number 01-001778.

Oil and grease were analyzed by extracting aliquots of sample with freon, and analyzing the extract using infrared spectrophotometry, in accordance with EPA Method 413.2. For the analyses of California Assessment Manual (CAM) metals, some of the samples required acid digestion before analyses. Sample B1-AI was oil, and was digested with nitric acid, in accordance with EPA Method 3030. Samples B1-ZM, B1-ZN, B1-ZY, B1-AC, B1-AL, and B1-AU were water samples which contained a large amount of solid material. They were digested under high temperature with sulfuric acid. As a consequence of digestion, these samples have a higher limits of detection than the undigested samples. The remainder of the samples were analyzed directly. Analyses of the digests and waters were done using inductively coupled plasma and atomic absorption graphite furnace, in accordance with the EPA 200 series methods. EPA Method 150.1 was used for the analyses of .Hq

Described below is the disposition of each sample.

These samples were analyzed individually for oil and grease.

B1-H

B1-I

B1-ZY Untreated

B1-AE

BI-AHUNI-ROHD

BI-AL Untraky

January 10, 1985 Page 2 Gregg & Associates, Inc.

Oil & Grease (cont.)
B1-AU un treated
B1-J
MM 2 5'
MM 2 8'
B6-MM1 5'
B6-MM1 8'

2) These samples were analyzed individually for pH.

BI-ZM
BI-ZN untreated
BI-ZY untreaded
BI-AC
BI-AI untr,
BI-AJ
BI-AL
BI-ANUNTREATED
BI-AP Untreated

3) These samples were analyzed individually for CAM metals.

B1-ZM
B1-ZN Treated
B1-ZY Treated
B1-AC
B1-AI Treated
B1-AJ
B1-AL matriated
B1-AU Treated
B1-ANTreated
B1-AP Treated

Attached are the test results.

ML:mat

John W. Strand Support Services Manager

Reviewed by

Mark King Laboratory Manager

Attachments

Sample	Oil & Grease
BI-H untreased	∿ 50% oil ∿50% water 896 mg/L
B1-I	∿ 50% oil ∿50% water
B1-ZY untreated	41.5 mg/L
B1-AE untreated	2330 mg/L
B1-AHUntreaded	1.0
B1-AL Untreated	10.8 mg/L
B1-AUuntreated	254 mg/L
B1-J	> 99% oil
MM 2 5'	119 mg/kg
MM 2 8'	993 mg/kg
B6MM 1 8'	· 2213 mg/kg
B6MM 1 5'	462 mg/kg

<u>Sample</u>	pH (Units)	
B1-ZM untreated B1-ZN untreated B1-ZY untreated B1-AC E1-AI Untreated B1-AJ untreated B1-AL untreated B1-AN untreated B1-AP untreated	7.07 1.12 8.09 8.35 7.57 ~ 50% water ~ 50% oil 1.53 7.69 7.25 7.45	pH on water chase

01-001746-5

DATA SUMMARY OF CAM LISTED METALS

Sample I.D.:_	B1-ZM Tr	eated	Date Analyzed:_	12-18 th	ru 12-31-84
Sample Matrix	:Water		Concentration:_	milligrams	per kilogram
DIGESTION MET	THOD: 3050				
	(Circle Ope) mg/L or mg/Kg				
•	4.20	Antimony			
	0.62	Arsenic			
	192	Barium			
	<0.1	Beryllium	n		
	7.69	Cadmium		•	<u>.</u>
	161	Chromium	(total)		•
		*Chromium	(hexavalent)		
	0.42	Cobalt			
	69	Copper			•
	11.1	Lead			
	0.09	Mercury			
	3.4	Molybden	ım		•
	2.2	Nickel			•
	4.0	Selenium			v.*
	1.3	Silver			
	<0.05	Thallium	1		
·	1.4	Vanadium	•		

53

Gregg & Associates

Client:

Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates	5	Date Received:_		12-3-8	34
Sample I.D.: B1-ZN Tr	rated	Date Analyzed:_	12-18	thru	12-31
Sample Matrix: Water		Concentration:	milligra	ims pe	er kil
DIGESTION METHOD: 3050					
(Circle One) mg/L or mg/Kg <0.25	Antimony	,			
<0.25	Arsenic				
0.6	Barium				
<0.1	Berylliu	m			
1.51	Cadmium				
9.5	Chromium	(total)			
	*Chromium	ı (hexavalent)			
1.7	Cobalt				
4.6	Copper				
2.3	Lead				
0.008	Mercury				
4.2	Molybder	ıum			
0.3	Nickel				
<0.25	Selenium	1			
0.6	Silver				
<0.05	Thallium	n			
2.8	Vanadium	n			

Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & A	ssociates	Date Received:	12-3-84
Sample I.D.:	B1-ZY Treated	Date Analyzed:	12-18 thru 12-31-84
Sample Matrix:	Water	Concentration:	milligrams per kilogram
DIGESTION METHOD:	3050		

(Circle One) mg/L or (mg/Kg < 0.25 Antimony <0.25 Arsenic 1.6 Barium < 0.1 Beryllium < 0.05 Cadmium 6.7 Chromium (total) *Chromium (hexavalent) 0.5 Cobalt 6.9 Copper 2.9 Lead 0.004 Mercury < 0.1 Molybdenum 0.1 Nickel <0.25 Selenium < 0.3 Silver <0.05 Thallium <0.05 Vanadium 21.6 Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates

Date Received: 12-3-84

Sample I.D.: B1-AC

Date Analyzed: 12-18 thru 12-31-84

Sample Matrix: Water & Treakd Concentration: milligrams per kilogram

DIGESTION METHOD: 3050

(Circle One mg/L or/mg/Kg 0.31Antimony 4.36 Arsenic 18.1 Barium < 0.1 Beryllium 2.54 Cadmium 32 Chromium (total) *Chromium (hexavalent) 3.9 Cobalt 56 Copper 36.3 Lead 0.002 Mercury 3.3 Molybdenum 2.5 Nickel < 0.25 Selenium 5790 Silver <0.05 Thallium 1.2 Vanadium 231 Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

12-3-84

12-18 thru 12-31-84

DATA SUMMARY OF CAM LISTED METALS

Client: Gregg & Associates Date Received: Sample I.D.: B1-AI reated Date Analyzed: Concentration: milligrams per kilogram Sample Matrix: Water DIGESTION METHOD: 3030 (Circle One) mg/L or (mg/Kg 0.69 Antimony Arsenic <1.25 Barium < 0.125 Beryllium < 0.25 < 0.13 Cadmium Chromium (total) 0.5 *Chromium (hexavalent) Cobalt < 0.25 0.8 Copper < 0.6 Lead <0.0005 in water/ 0.3 in oil Mercury <0.25 Molybdenum 0.4 Nickel <1.25 Selenium < 0.65 Silver < 0.05 Thallium < 0.125 Vanadium 6.3 Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates	Date Received:_	12-3-84
Sample I.D.: B1-AJ treadled	Date Analyzed:_	12-18 thru 12-31-84
Sample Matrix: Water	Concentration:	milligrams per lite

(Circle O ne) mg/L)or mg/Kg.	
<0.005	Antimony
<0.005	Arsenic
<0.01	Barium
<0.02	Beryllium
0.001	Cadmium
<0.01	Chromium (total)
	*Chromium (hexavalent)
<0.02	Cobalt
<0.02	Copper
<0.005	Lead
<0.0005	Mercury
<0.02	Molybdenum
<0.01	Nickel
<0.005	Selenium
<0.05	Silver
<0.005	Thallium
<0.01	Vanadium
0.72	Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: G	regg & Associates	Date Received:	12-3-84
Sample I.D.:	BI-AL treated	 _ Date Analyzed:	12-18 thru 12-31-84
Sample Matri:	x: Water	Concentration:	milligrams per kilogram
DIGESTION ME	THOD: 3050		

(Circle One) mg/L or(mg/Kg))
<0.25	Antimony
<0.25	Arsenic
19.1	Barium
<0.1	Beryllium
0.30	Cadmium
1.2	Chromium (total)
	*Chromium (hexavalent)
<0.1	Cobalt
1.1	Copper
4.0	Lead
Insufficient sample	Mercury
0.2	Molybdenum
0.3	Nickel
<0.25	Selenium
0.5	Silver
<0.05	Thallium
<0.05	Vanadium
21.7	Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates	Date Received: 12-3-84
Sample I.D.: B1-AU (Treated)	Date Analyzed: 12-18 thru 12-31-84
Sample Matrix: Water	Concentration:milligrams per kilogram
DIOCCITON NETWORK 2000	

DIGESTION METHOD: 3050

(Circle One) mg/L or mg/Kg)
<0.25	Antimony
<0.25	Arsenic
<0.05	Barium
<0.1	Beryllium
<0.05	Cadmium
5.8	Chromium (total)
	*Chromium (hexavalent)
<0.1	Cobalt
0_2	Copper
<0.25	Lead
<0.0005	Mercury
<0.1	Molybdenum
. 0.1	Nickel
<0.25	Selenium
<0.25	Silver
<0.05	Thāllium
0.05	Vanadium
1.2	Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client: Gregg & Associates

Date Received: 12-3-84

Sample I.D.: B1-AN Treated Date Analyzed: 12-18 thru 12-31-84

Sample Matrix: Water Concentration: milligrams per liter

(Circle One) mg/L or mg/Kg	
<0.005	Antimony
<0.005	Arsenic
<0.01	Barium
<0.02	Beryllium
<0.001	Cadmium
<0.01	Chromium (total)
	*Chromium (hexavalent)
<0.02	Cobalt -
<0.02	Copper
0.009	Lead
<0.0005	Mercury
<0.02	Molybdenum
<0.01	Nickel
<0.005	Selenium
<0.05	Silver
<0.005	Thallium
<0.01	Vanadium
0.16	Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Client	:Greg	gg & Associates	Date	Received:	12-3-84	
Sample	I.D.:	BI-AP Treat	d Date	: Analyzed:	12-18 thru	12-31-84
Sample	Matrix:	Water	Cond	entration:	milligrams	<u>per liter</u>

(Eircle One) (mg/L/or mg/Kg	
<0.005	Antimony
<0.005	Arsenic
<0.01	Barium
<0.02	Beryllium
<0.001	Cadmium
<0.01	Chromium (total)
	*Chromium (hexavalent)
<0.02	Cobalt
0.03	Copper
5.5	Lead
<0.0005	Mercury
<0.02	Molybdenum
<0.01	Nickel
<0.005	Selenium
<0_05	Silver
<0.005	Thallium
<0.01	Vanadium
2.34	Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Corporate Offices 225 W. 30th Street National City, CA 92050 649 477-4173

I.D. 01-001778

January 10, 1985

Gregg & Associates, Inc. 18351 Beach Blvd., Suite L Huntington Beach, CA 92647

Project: CALAC

Number: 84-106

On December 31, 1984 Analytical Technologies, Inc. received fourteen (14) liquid samples (water and oil), for analyses of volatile organics. These samples were originally sent on December 3, 1984, but because of improper sampling, analyses of volatile organics were not possible. Analyses was done using gas chromatographs equipped with Hall and photoionization detectors, in accordance with EPA methods 601 and 602.

Preliminary volatile results for sample B1-J were reported verbally. A second GC/HD/PID run failed to confirm the presence of 1,2-dichloro-ethane, 1,1,1-trichloroethane, trichloroethene, and benzene. They have been determined to be laboratory contaminants. The sample is being analyzed by gas chromatography mass spectrometer for additional confirmation.

Samples B1-J, B1-AI, B1-ZM, and B1-55 were oil, and required a methanol extraction for analyses. The limit of detection is 100 times higher as a consequence of the extraction.

Of the two volatile vials, samples for $B1-\frac{A/T}{EE}$, one was $\geq 99\%$ oil, the second was split, approximately half water and half oil. They were analyzed as three separate samples. The two oil samples were extracted with methanol. The analyses of B1-AN showed interference on the chromatogram. The sample was reanalyzed by the same method (GC/HD/PID), and displayed the same interference. The sample is currently being analyzed by gas chromatogram/mass spectrometer.

Gas chromatograph/mass spectrometer confirmation of all volatile results are pending.

ML:mat

John W. Strand

Support Services Manager

In W. Ith An A

Reviewed by

Laboratory Manager

(EPA METHOD 601 & 602)

01-001778

Client: GREGG AM	ND ASSOCIATES Date	Collected: 12-	7-84
Sample I.D.: Bl	-AJ Untreated Date	Received by Lab:	12-13-84
Sample Matrix:	WATER Date	Analyzed: 12-16	-84
~			
<u>rg/L</u>		μg/L	
<-0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichloroethame
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
< 0.1	Carbon Tetrachloride	ND_	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
. <u> </u>	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		<i>,</i> ·
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene	2	
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloroproper	ie	
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethar	ne .	

Tetrachloroethene

< 0.4

(EPA METHOD 601 & 602)

01-001778

Toluene

1,1,1-Trichloroethane1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

Client: GREGG AND ASSOCIATES	Date Collected: 12-7-84
Sample I.D.: BI-AL Untwated	Date Received by Lab: 12-13-84
Sample Matrix: WATER	Date Analyzed: 12-16-84

ug/L	_	μg/L
< 0.2	Benzene	< 0.4
< 0.1	Bromodichloromethane	< 0.2
< 0.7	Bromoform	< 0.1
< 0.1	Bromomethane	< 0.3
< 0.1	Carbon Tetrachloride	ND
< 0.8	Chlorobenzene	< 0.2
< 0.8	Chloroethane	
< 0.2	2-Chloroethylvinylether	
< 0.1	Chloroform	
< 0.2	Chloromethane	
< 0.1	Dibromochloromethane	
< 0.4	1,2-Dichlorobenzene	
< 0.4	1,3-Dichlorobenzene	
< 0.6	1,4-Dichlorobenzene	
	Dichlorodifluoromethane	
< 0.1	1,1-Dichloroethane	
< 0.1	1,2-Dichloroethane	
< 0.1	1,1-Dichloroethene	
< 0.1	trans-1,2-Dichloroethene	
< 0.1	1,2-Dichloropropane	
< 0.1	cis-1,3-Dichloropropene	-
< 0.1	trans-1,3-Dichloropropene	
< 0.1	Ethyl Benzene	
< 0.5	Methylene Chloride	
< 0.4	1,1,2,2-Tetrachloroethane	
< 0.4	Tetrachlorsethene	

(EPA METHOD 601 & 602)

01-001778

Client: GREGG	 .	Collected: 12	2-7-84
Sample I.D.:	BI-AU Untreated Date	Received by Lab	: 12-13-84
Sample Matrix:	WATER Date	Analyzed: 12-1	6-84
_			
μg/L		μg/L	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	4 4.8	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethan
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		
< 0.1	_ Chloroform		
< 0.2	_ Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	_ 1,1-Dichloroethane		,
< 0.1	_ 1,2-Dichloroethane		
< 0.1	l,l-Dichloroethene		
741	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans=1,3-Dichloropropen	e	
< 0.1	_ Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	_ 1,1,2,2-Tetrachloroethan	e	•
05.0			

Tetrachloroethene

35.2

01-001778

Toluene

1,1,1-Trichlorgethane
1,1,2-Trichlorgethane

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

Client: GREGG AND ASSOCIATES

Date Collected: 12-7-84

Sample I.D.: B1-AP Untreated

Date Received by Lab: 12-13-84

Sample Matrix: WATER

Date Analyzed: 12-16-84

μg/L		μg/L
< 0.2	Benzene	< 0.4
< 0.1	Bromodichloromethane	< 0.2
< 0.7	Bromoform	< 0.1
< 0.1	Bromomethane	< 0.3
< 0.1	Carbon Tetrachloride	ND
< 0.8	Chlorobenzene	< 0.2
< 0.8	Chloroethane	
< 0.2	2-Chloroethylvinylether	
< 0.1	Chloroform	
< 0.2	Chloromethane	
< 0.1	Dibromochloromethane	
< 0.4	1,2-Dichlorobenzene	
< 0.4	ì,3-Dichlorobenzene	
< 0.6	1,4-Dichlorobenzene	
פא	Dichlorodifluoromethane	
< 0.1	l,l-Dichloroethane	
< 0.1	1,2-Dichloroethane	
< 0.1	l,l-Dichloroethene	
< 0.1	trans-1,2-Dichloroethene	
< 0.1	1,2-Dichloropropane	
< 0.1	cis-1,3-Dichloropropene	
< 0.1	trans-1,3-Dichloropropene	
< 0.1	Ethyl Benzene	
< 0.5	Methylene Chloride	
< 0.4	1,1,2,2-Tetrachloroethane	
< 0.4	Tetrachloroethene	

(EPA METHOD 601 & 602)

01-001778

Client: GREGG AND ASSOCIATES	Date Collected: 12-7-84
Sample I.D.: BI-AH Untreated	Date Received by Lab: 12-13-84
Sample Matrix: WATER	Date Analyzed: 12-16-84

ug/L	-	μg/L	· -
< 0.2	Benzene	2.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	- Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	- Vinyl Chloride
< 0.8	Chloroethane		_
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroferm		
< 0.2	Chloromethane		•
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
711	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		
< 0.1	l,1-Dichloroethene		•
< 0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene	2	
<u> </u>	Ethyl Benzene		
< G.5	Methylene Chloride		

1,1,2,2-Tetrachloroethane

Tetrachloroethene

< 0.4

16..6

(EPA METHOD 601 & 602)

01-001778

Toluene

1,1,1-Trichloroethane 1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

Client	GREGG AND ASSOCIATES	Date	Collected: 12-7-84
Sample	I.D.: B1-Zy Untreated	Date	Received by Lab: 12-13-84
Sample	Matrix: WATER	Date	Analyzed: 12-16-84

_		
µg/L		⊬g/L
< 0.2	Benzene	< 0.4
5.1	Bromodichloromethane	< 0.2
< 0.7	Bremeform	< 0.1
< 0.1	Bromomethane	< 0.3
< 0.1	Carbon Tetrachloride	СИ
< 0.8	Chlorobenzene	< 0.2
< 0.8	Chloroethane	
< 0.2	2-Chloroethylvinylether	
7.8	Chloroform	.
< 0.2	Chloromethane	
2.3	Dibromochloromethane	
< 0.4	1,2-Dichlorobenzene	
< 0.4	1,3-Dichlorobenzene	
< 0.6	1,4-Dichlorobenzene	
ND	Dichlorodifluoromethane	
< 0.1	l,l-Dichloroethane	
< 0.1	1,2-Dichloroethane	
<u> </u>	1,1-Dichloroethene	
< 0.1	trans-1,2-Dichloroethene	
< 0.1	1,2-Dichloropropane	
< 0.1	cis-1,3-Dichloropropene	
< 0.1	trans-1,3-Dichloropropen	E
< 0.1	Ethyl Benzene	
. 0.5	Methylene Chloride	
- 0.4	1,1,2,2-Tetrachloroethan	е
1.6	Tetrachloroethene	

(EPA METHOD 601 & 602)

01-001778

Sample I.D.:	ND ASSOCIATES Date B1-ZM Unbreaked Date	Collected: <u> </u>	o: 12-13-84
Sample Matrix:		Analyzed: 12-	
<u> </u>			
ug/L	-	µg/L	-
< 0.2	Benzene	< 0.4	Toluene
2.2	Bromodichloromethane	78.9	- 1,1,1-Trichloroethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	< 0.3	Trichloroethene
0.8	Carbon Tetrachloride	ND	- Trichlorofluorometham
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane	1540	Freon 113
< 0.2	2-Chloroethylvinylether		_
< 0.1	Chloroform		
< 0.2	Chloromethane		
1.8	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.5	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		,
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		
< 0.1	trans-1,2-Dichloroethene	•	
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropen	e	
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethan	e .	

33.9

Tetrachloroethene

Client: Gregg & Associates	Date Collected: 12-7-84
Sample I.D.: B1-E3 Oil Sample 1	Date Received by Lab: 12-13-84
Sample Matrix: WATER	Date Analyzed: 12-16-84

ug/L	_	ug/L
< 20	Benzene	< 40
< 10	Bromodichloromethane	< 20
< 70	Bromeform	< 10
< 10	Bromomethane	< 30
< 10	Carbon Tetrachloride .	No
< 80	Chlorobenzene	< 20
< 80	Chloroethane	
< 20	2-Chloroethylvinylether	
< 10	Chloroform	
< 20	Chloromethane	
< 10	Dibromochloromethane	
< 40	1,2-Bichlorobenzene	
< 40	1,3-Dichlorobenzene	
< 60	1,4-Dichlorobenzene	
ND_	Dichlorodifluoromethane	
<_10	1,1-Dichloroethane	
< 10	1,2-Dichloroethane	
10	1,1-Dichloroethene	
< 10	trans-1,2-Dichloroethene	
< 10	1.2-Dichloropropane	
< 10	cis-1,3-Dichloropropene	
< 10	trans-1.3-Bichloropropene	
. 10	Ethyl Benzene	
< 50	Methylene Chloride	
< 40	1,1,2,2-Tetrachloroethane	
4340	Tetrachloroethene	

ND = Not Detected, limit of
 detection for this
 compound has not been
fully evaluated.

Toluene

1,1,1-Trichleroethane
1,1,2-Trichleroethane
Trichleroethane

___ Vinyl Chloride

Trichloroflucromethane

Client: Gregg & A			Collected:	12-7-84
Sample I.D.: B1-F	oil Phase Sa	mpleDate	Received by	Lab: 12-13-84
Sample Matrix:	WATER 2 /	Oil Date	Analyzed:	12-16-84

μg/L			μg/L	
< 20	Benzene	<	40)
10	Bromodichloromethane _	<	20	}
< 70	Bromo form		10)
< 10	Bromomethane	<	30)
< 10	Carbon Tetrachloride		NE	
< 80	Chlorobenzene	<	20)
< 80	Chloroethane			
< 20	2-Chloroethylvinylether			
< 10	Chloroform			
< 20	Chloromethane			
< 10	Dibromochloromethane			
< 40	1,2-Dichlorobenzene			
<u> </u>	1,3-Dichlorobenzene			
< 60	1,4-Dichlorobenzene			
ND	Dichlorodifluoromethane			
<u> </u>	1,1-Dichloroethane			
< 10	1,2-Dichloroethane			
< 10	1,1-Dichloroethene			
< 10	trans-1,2-Dichloroethene			
< 10	1,2-Dichloropropane			
<u> </u>	cis-1,3-Dichloropropene			
- 10	trans-1,3-Dichloropropend	2		
< 10	Ethyl Benzene			
< 50	Methylene Chloride			
< 40	1,1,2,2-Tetrachloroethane	2		
65,7	Tetrachlorcethene			

ND = Not Detected, limit of
 detection for this
 compound has not been
fully evaluated.

Toluene

1,1,1-Trichloroethane1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

01-001778

Client: GREGG	AND ASSOCIATES	Date	Collected:_	12-7-84
Sample I.D.:	BI-ZC Untrea	Hate	Received by	Lab: 12-13-84
Sample Matrix:	WATER	Date	Analyzed:	12-16-84

		,	
μg/L		ug/L	·
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	< 0.2	1,1,1-Trichlorcethane
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	2.5	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	- Vinyl Chloride
< 0.8	Chloroethane		
< 0.2	2-Chloroethylvinylether		•
2.9	Chloroform		Y
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane	·	
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		,
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		,
< 0.1	1,2-Dichloreethane		
< 0.1	1,1-Dichloroethene		
2.4	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
<u> </u>	trans-1,3-Dichloropropene		
<u> </u>	Ethyl Benzene		
< 0.5	Methylene Chloride		

1,1,2,2-Tetrachloroethane

Tetrachloroethene

< 0.4

4490

(EPA METHOD 601 & 602)

01-001778

	AA	Received by L	ab: 12/13/84
Sample Matrix:	samnle 2	Analyzed:	
νg/L		μg/L	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	6.6	
< 0.7	Bromoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	2.8	Trichloroethene
< 0.1	Carbon Tetrachloride	ND	Trichlorofluoromethan
< 0.8	Chlorobenzene	< 0.2	
< 0.8			_
< 0.2	2-Chloroethylvinylether		
< 0.1	Chloroform		
< 0.2	— Chloromethane		
< 0.1			
< 0.4	1,2-Dichlorobenzene		•
< 0.4	1,3-Dichlorobenzene		
< 0.6	 l,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	 1,1-Dichloroethane		
< 0.1	 1,2-Dichloroethane		, .
< 0.1	 1,1-Dichloroethene		
<_0.1	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropen	e	
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		·
< 0.4	1,1,2,2-Tetrachloroethan	e	
20 H	Tetrachloroethene		

(EPA METHOD 601 & 602)

Duplicate 01-001778

Client: GREGG	AND ASSOCIATES	Pate	Collected:	12-7-84
Sample I.D.:	AND ASSOCIATES Bl-AC Duplicate	unhaka	Received by	Lab: 12-13-84
Sample Matrix:			Analyzed:	

va (1	•	a/I	
μg/L		<u>ا/ور</u>	
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	1.0	1,1,1-Trichlorcethane
< 0.7	Bremoform	< 0.1	1,1,2-Trichloroethane
< 0.1	Bromomethane	1.8	Trichloroethene
< 0.1	Carbon Tetrachloride	DИ	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethanè		
< 0.2	2-Chloroethylvinylether	-	
7.1	. Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		•
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	l,l-Dichloroethane		,·
< 0.1	1,2-Dichloroethane		
< 0.1	1,1-Dichloroethene		
0.4	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropene		
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethane		

Tetrachloroethene

(EPA METHOD 601 & 602)

01-001778

Client: GREGG A	AND ASSOCIATES Date	Collected: 1	2-7-84
Sample I.D.:	BI-AC Untreated Date	Received by La	b: 12-13-84
Sample Matrix:_	WATER Date	Analyzed: <u>12-</u>	16-84
_			
μg/L		⊬g/L	-
< 0.2	Benzene	< 0.4	Toluene
< 0.1	Bromodichloromethane	4.7	1,1,1-Trichloroethane
< 0.7	Bromoform	< 0.1	- 1,1,2-Trichloroethane
< 0.1	Bromomethane	2.6	- Trichloroethene
< 0.1	Carbon Tetrachloride	ND	- Trichlorofluoromethan
< 0.8	Chlorobenzene	< 0.2	- Vinyl Chloride
< 0.8	Chloroethane		_
< 0.2	2-Chloroethylvinylether		
7.2	Chloroform		
< 0.2	Chloromethane		
< 0.1	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluoromethane		
< 0.1	1,1-Dichloroethane		
< 0.1	1,2-Dichloroethane		•
< 0.1	1,1-Dichloroethene		
1.4	trans-1,2-Dichloroethene		
< 0.1	1,2-Dichloropropane		
< 0.1	cis-1,3-Dichloropropene		
< 0.1	trans-1,3-Dichloropropen	е	
< 0.1	Ethyl Benzene		
< 0.5	Methylene Chloride		
< 0.4	1,1,2,2-Tetrachloroethan	e	

5.5

Tetrachloroethene

Toluene

1,1,1-Trichloroethane1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyì Chloride

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 601 & 602)

Client:	Gregg	& Associa	tes D	ate	Collected:	12-7	7-84	
Sample	I.D.:	B1-A8 I	untreatedo	ate	Received by	Lab:	12-13-84	
Sample	Matrix:_	WATER	D	ate	Analyzed:	12-1	16-84	

ug/L		hā\	1
	· ·	<u> </u>	<u>-</u>
< 20	Benzene	< 4	40
< 10	Bromodichloromethane	< 2	20
< 70	Bromoform	< .	10
< 10	Bromomethane	< (30
< 10	Carbon Tetrachloride	ND	}
< 80	Chlorobenzene	< 2	20
< 80	Chloroethane		
< 20	2-Chloroethylvinylether		
< 10	Chloroform		
< 20	Chloromethane		
< 10	Dibromochloromethane		
< 40	1,2-Dichlorobenzene		
< 40	1,3-Dichlorobenzene		
< 60	1,4-Dichlorobenzene		
<u> </u>	Dichlorodifluoromethane		
< 10	1,1-Dichloroethane		
< 10	1,2-Dichloroethane		
< 10	1,1-Dichloroethene		
< 10	trans-1,2-Dichloroethene		
< 10	1,2-Dichloropropane		
< 10	cis-1,3-Dichloropropene		
< 10	trans-1,3-Dichloropropen	e	
< 10	Ethyl Benzene		
< 50	Methylene Chloride		
< 40	1,1,2,2-Tetrachloroethan	е	
281	Tetrachloroethene		

ND = Not Detected, limit of
 detection for this
 compound has not been
fully evaluated.

Client: Gregg & Associates	Date	Collected:	12-7-84	
Sample I.D.: B1-J	Date	Received by	Lab: 12-13-84	
Sample Matrix: WATER	Date	Analyzed:	12-16-84	

_		
ug/L	-	μg/L
< 0.2	Benzene	480
< 0.1	Bromodichloromethane	< 0.2
< 0.7	Bromo form	< 0.1
< 0.1	Bromomethane	< 0.3
< 0.1	Carbon Tetrachloride	ND
< 0.8	Chlorobenzene	< 0.2
< 0.8	Chloroethane	5890
< 0.2	2-Chloroethylvinylether	4170
< 0.1	Chloroform	
< 0.2	Chloromethane	
< 0.1	Dibromochloromethane	*
< 0.4	1,2-Dichlorobenzene	•
< 0.4	1,3-Dichlorobenzene	The
< 0.6	1,4-Dichlorobenzene	·GC/
ND	Dichlorodifluoromethane	con
< 0.1	1,1-Dichloroethane	GC/
< 0.1	1,2-Dichloroethane	-,
< 0.1	l,l-Dichloroethene	
< 0.1	trans-1,2-Dichloroethene	
< 0.1	1,2-Dichloropropane	
< 0.1	cis-1,3-Dichloropropene	
< 0.1	trans-1,3-Dichloropropen	e
3630	Ethyl Benzene	
< 0.5	Methylene Chloride	
< 0.4	1,1,2,2-Tetrachloroethan	e
5350	Tetrachloroethene	

* Co-elute

μg/L

< 0.2

< 0.1 < 0.3

< 0.2

These are the results from a second 'GC/HD/PID analyses. Additional confirmation of these results by GC/MS is pending.

Toluene

1,1,1-Trichloroethane 1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

0,P -Xylenes*

M-Xylene

Toluene

1,1,1-Trichloroethane
1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

VOLATILE ORGANIC ANALYSIS DATA SUMMARY (EPA METHOD 601 & 602)

Client: Greg	g & Assocaites	Date	Collected:	12-7-84
Sample I.D.:	BI-ZN Untrati	Date	Received by	Lab: 12-13-84
Sample Matrix:	WATER	Date	Analyzed:	12-16-84

_		
μg/L		μg/L
< 0.2	Benzene	< 0.4
< 0.1	Bromodichloromethane	< 0.2
< 0.7	Bromoform	< 0.1
< 0.1	Bromomethane	< 0.3
< 0.1	Carbon Tetrachloride	ND
< 0.8	Chlorobenzene	< 0.2
< 0.8	Chloroethane	
< 0.2	2-Chloroethylvinylether	
< 0.1	Chloroform	
< 0.2	Chloromethane	
< 0.1	Dibromochloromethane	
< 0.4	1,2-Dichlorobenzene	
< 0.4	1,3-Dichlorobenzene	
< 0.6	1,4-Dichlorobenzene	
ND	Dichlorodifluoromethane	
< 0.1	1,1-Dichloroethane	
< 0.1	1,2-Dichloroethane	
< 0.1	1,1-Dichloroethene	
< 0.1	trans-1,2-Dichloroethene	
< 0.1	1,2-Dichloropropane	
< 0.1	cis-1,3-Dichloropropene	
< 0.1	trans-1,3-Dichloropropen	е
< 0.1	Ethyl Benzene	
< 0.5	Methylene Chloride	
< 0.4	1,1,2,2-Tetrachloroethan	e

Tetrachloroethene

4490

Client: Gregg	& Associates	_ Date	Collected:	12-11-84
Sample I.D.:	BI-AN untreat	rd Date	Received by	Lab: 12-13-84
Sample Matrix:	WATER	_ Date	Analyzed:	12-16-84

νg/L	_	µg/L	
< 0.2	Benzene	< 0.4	Toluene
*	Bromodichloromethane	*	l,1,1-Trichloroethane
< 0.7	Bromoform	.*	1,1,2-Trichloroethane
< 0.1	Bromomethane	*	Trichloroethene
*	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.8	Chlorobenzene	< 0.2	Vinyl Chloride
< 0.8	Chloroethane		
*	2-Chloroethylvinylether		
*	Chloroform		
< 0.2	Chloromethane		* Detection not possible
*	Dibromochloromethane		due to chromatographic
< 0.4	1,2-Dichlorobenzene		interference, (see cover letter).
< 0.4	l,3-Dichlorobenzene		· = · - · · · ·
< 0.6	1,4-Dichlorobenzene		
ND_	Dichlorodifluoromethane		

1,1-Dichloroethane 1,2-Dichloroethane

1,1-Dichloroethene

1,2-Dichloropropane

Methylene Chloride

Tetrachloroethene

Ethyl Benzene

trans-1,2-Dichloroethene

cis-1,3-Dichloropropene trans-1,3-Dichloropropene

1,1,2,2-Tetrachloroethane

* < 0.1

* < 0.1

< 0.5

< 0.4

< 0.4

¹e er

TRUESDAIL LABORATORIES, INC.

EMISTS - MICROBIOLOGISTS - ENGINEERS
RESEARCH - DEVELOPMENT - TESTING

Gregg & Associates

CLIENT 18351 Beach Boulevard, Suite L

Huntington Beach, CA 92647

ATTENTION: Dean Gregg

SAMPLE

Soil

P. O. No. 84106

INVESTIGATION

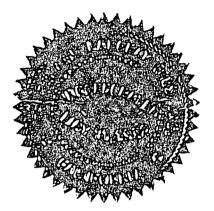
Organic Contamination

14201 FRANKLIN AVENUE TUSTIN, CALIFORNIA 92680 AREA CODE 714 • 730-6239 AREA CODE 213 • 225-1864 CABLE: 7 7 7 8 ... 6 A G

DATE November 7, 1984

RECEIVED October 31, 1984

LABORATORY NO. 02034


RESULTS Milligrams per Kilogram

		TOTAL RECOVERABLE		Volatile O	rganic	Compound	S	
	SAMPLE	HYDROCARBONS	TOLUENE	HEXANE	MCH ^a	1,2DCE ^b	<u>4мэн^е</u>	
,	Composite-B1-H-B1 (15', 20', 30',	40') <4	-		-	_	-	
	Composite-B1-I-B1 (15', 20', 30',	40') < 4	-	-	-	-	-	
	B1-AM-B1-3'	490*	7.7	-	-	-	-	
	5'	19,500*	3.6	2.0	0.8	-	-	
	9'	< 4	0.67	-	-	-	-	
	14'	< 4	0.70	-	-	3.7	0.7	
	30'	< 4	0.54	-		-	0.78	
	40'	< 4	0.68	-	-	-	0.69	

^aMethylcyclohexane b1, 2 Dichloroethane

c4 - Methyl 3 - heptanone

* The hydrocarbons extracted from these two soils were not gasolines or diesel fuel. Evaporation of the extracts yielded high boiling point oily residues.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Richard D. Reid Chief Water Chemist

REPORT

TRUESDAIL LABORATORIES, INC.

CHEMISTS - MICROBIOLOGISTS - ENGINEERS
RESEARCH - DEVELOPMENT - TESTING

DATE December 19, 1984

RECEIVED Various dates

LABORATORY NO. 02275

Gregg & Associates
CLIENT 19251 Peoch Plyd

18351 Beach Blvd., Suite L

Huntington Beach, CA

Attention: Dean Gregg

SAMPLE

Soils & Liquids from Lockheed

INVESTIGATION

Organics Analysis - Amended Analyses

Sample 1	,2 DCE*	Parts per Million Carbon Tetrachloride	Chloroform	1,1,1 TCE*
B6B (soil) 0	.014	0.047	ND	ND
B6L (soil)	ND	0.041	ND	ND
B60 Organic Liquid)	ND	0.06	0.81	2.08
	.11	0.12	ND	ND
, , ,	.0002	0.0002	0.0038	0.0202
			*	

RESULTS

:	B60 Composition, %	·	
Heptane	12.8	2-Methylheptane	5.6
Xylenes	9.1	2-Methylbutane	1.5
Octane	3.96	Pentane	1.1
Hexane	3.8	Cyclohexane	0.98
Methylcyclohexane	5.4	4-Methyl-1-Pentene	1.0
2-Methy1-1,4 hexadiene	6.8	2,3 Dimethylbutane	2.3
4-Methyl-1-hexene	4.3	3-Methy1-2-pentene	2.9
Butane	3. 8	1,3 Dimethylcyclopentane	1.7
Ethyl Cyclopentane	1.7	2,3 Dimethyl-1,4 -hexadiene	2.3
Methyl Cyclopentane	3.1	1,3 Dimethylcyclohexane	1.2
1-Ethy1-3-methy1cyclopentene	4.7	1 Octanol	1.2
1,1,3 Trimethylcyclohexane	5.1	1,2,3 Trimethylcyclohexane	1.1
		2,2,5,5 Tetramethy1-3-hexane	1.5

^{* 1,2} DCE = 1,2 Dichloroethane

^{* 1,1,1} TCE = 1,1,1 Trichloroethane

Lab No.

Milligrams per Kilogram

<u>Sample</u>	1,1 Dichloroethane	Carbon Tetrachloride	1,2 Dichloroethylene	Chlor ethar
A1-U-B1-10'	IS	IS	IS	IS
22 '	ND	0.075	<0. 008	$\overline{\mathbb{C}}$
32'	ND	0.025	0.008	ND
40'	IS	IS	IS	IS
- A1-V-B2 10'	ND	0.067	0.10	ND
22'	ND	0.057	0.042	ND
321	ND	0.075	0.065	ND
40'	ND	0.082	0.12	ND
A1-F10-MV2	ND	0.062	0.069	ND
A1-F10-MV1	ND	0.14	0.16	ND
-A1-U-B1 <00000	21 A G ND	0.082	<0.008	ND
-A1-U-B1 < 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ND	< 0.0005	0.089	0.61
ا0' ا	ND	0.055	<0.008	ND
221	ND	0.041	< 0.008	ND
33'	ND	0.061	< 0.008	ND
40 '	IS	IS	IS	IS
-A1-F-B2 10'	ND	0.037	0.029	ND
231	IS	IS	IS	IS
32 '	ND	0.072	. 0.098	ND
40'	0.099	0.069	0.047	ND
.1 =	ما ا	331		

	Al-F Ligvid	Milligrams per Liter
Tri	Zearschloroethylane Perchloroethylane	28 653
	B1-AM-B1	Total Petroleum Hydrocarbons mg/kg
	3 ¹ 5 ¹	460 18,000

Soil containers from Al-T-Bl & B2 had insufficient amounts for analysis.

Respectfully submitted,

TRUESDAIL LABORATORIES, INC.

Richard D. Reid Chief Water Chemist Corporate Offices: 225 W. 30th Street National City, CA 92050 619 477-4173

I.D. 01-001970

March 27, 1985

Gregg & Associates, Inc. 18351 Beach Blvd., Suite L Huntington Beach, CA 92647

Attention: Ed Baquerizo

On February 20, 1985, Ed Baquerizo called Analytical Technologies, Inc. and requested additional testing on soils previously tested by Analytical Technologies, Inc. Volatile organic compounds were tested using a gas chromatograph/mass spectrometer in accordance with EPA method 8240. Metals were analyzed by acid digesting aliquots of soil, (EPA method 3050), and analyzing the digests using inductively coupled argon plasma and atomic absorption graphite furnace, in accordance with the methods cited in EPA publication 846.

Sodium for sample B1-ZB-B 40' will be sent in a follow-up report along with the quality control data for the metals.

Attached are the test results.

John W. Strand

Support Services Manager

Reviewed by

Mark King Laboratory Manager

ML: mat

Attachments

Gregg & Associates

I.D. 01-001970

DATA SHEET

Concentration	=	mg/kg*
---------------	---	--------

		concentration - mg/kg
Sample I.D.	Chromium	Sodium
B1-ZC-B1 12' B1-ZC-B1 17' B1-ZC-B1 25' B1-ZC-B1 40'	4.3 4.1 12.4 2.9	373 430 733 349
	<u>Sulfate</u>	
B1-U-B2 13' B1-U-B2 20' B1-U-B2 30' B1-U-B2 40'	11.1 26.1 29.8 <6	
	Chromium	Sodium
B1-ZB-B 10' B1-ZB-B 25' B1-ZB-B 40'	39.5 3.9 14.6	938 263
	Chromium	<u>pH</u>
B1-ZF-SL1 0-10' B1-ZF-SL1 15' B1-ZF-SL1 28'	5.3 5.9 6.1	10.00 9.36 9.67
	Beryllium	Mercury Molybdenum
B1-AN-B1 10' B1-AN-B1 15' B1-AN-B1 30' B1-AN-B1 40'	<0.5 <0.5 <0.5 <0.5	0.31 <25 <0.10 <25 0.54 <25 <0.10 <25
	Molybdenum	
B1-AP-B1 10' B1-AP-B1 15' B1-AP-B1 30' B1-AP-B1 40'	<25 <25 <25 <25	

^{*}mg/kg = milligrams per kilogram

I.D. 01-001970

DATA SHEET

Concentration = mg/kg*

Sample I.D	<u>.</u>	Sodium	Sulfate
B1-Background B1-Background B1-Background B1-Background	20' 30'	284 387 687 253	<6 <6 <6 <6
		Oil and Grease	
B1-ZJ-SL 8' B1-ZJ-SL 15' B1-ZJ-SL 30'		<0.6 21.8 6.0	

*mg/kg = milligrams per kilogram

DATA SUMMARY OF CAM LISTED METALS

Client	:Gre	gg & Associates	 Report Date:	3-27-85	
Sample	I.D.:	B1-AM-B2 16'	 ·		
Sample	Matrix:	Soil	 Concentration:	Total mg/kg	

(Circle O ne) mg/L or mg/Kg	
<2.5	Antimony
23.3	Arsenic
129	Barium
<0.5	Beryllium
<0.5	Cadmium
13.8	Chromium (total)
	*Chromium (hexavalent)
9.7	Cobalt
14.2	Copper .
2.9	Lead
0.22	Mercury
<25	Molybdenum
10.5	Nickel
<2.5	Selenium ·
<2.5	Silver
<2.5	Thallium
39.3	Vanadium
61	Zinc

*Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

DATA SUMMARY OF CAM LISTED METALS

Client	: Gre	egg & Associates	Report Date	: 3-2	27-85	
Sample	I.D.:	B1-AM-B2 23'				
Sample	Matrix:	Soil	Concentration	on:	Total mg/kg]

(Circle Ore) mg/L or mg/Kg	
<2.5	Antimony
5.7	Arsenic
39.7	Barium
<0.5	Beryllium
<0.5	Cadmium
3.8	Chromium (total)
	*Chromium (hexavalent)
2.6	Cobalt
5.7	Copper
<2.5	Lead
0.34	Mercury
<25	Molybdenum
2.8	Nickel
<2.5	Selenium ~
<2.5	Silver
<2.5	Thallium
12.6	Vanadium
23.6	Zinc

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

DATA SUMMARY OF CAM LISTED METALS

Client: Gregg & Associates Report Date: 3-27-85 Sample I.D.: B1-AM-B2 40' Sample Matrix: Soil Concentration: Total mg/kg

(Circle O re) mg/L or mg/Kg	
<2.5	Antimony
20.9	Arsenic
93.5	Barium
<0.5	Beryllium
<0.5	Cadmium
12.1	Chromium (total)
	*Chromium (hexavalent)
6.8	Cobalt
15.2	Copper
<2.5	Lead
<0.10	Mercury
<25	Molybdenum
10.6	Nickel
<2.5	Selenium
<2.5	Silver
<2.5	Thallium
28.9	Vanadium
53.8	Zinc
15.2 <2.5 <0.10 <25 10.6 <2.5 <2.5 <2.5 <2.5	Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium

^{*}Hexavalent chromium is tested only when the total chromium value exceeds threshold limits.

Corporate Offices: 225 W. 30th Street National City, CA 92050 619 477-4173

I.D. #01-002186

BECEIVED MAY 3 0 1985

May 24, 1985

Gregg and Associates 18351 Beach Blvd. Suite L Huntington Beach, California 92647

Attention: Ed Baquerizo

Project: Lockheed Construction Waste Dump

On May 3, 1985, Analytical Technologies, Inc. received twenty (20) soil samples to be composited and analyzed. The pH was determined in accordance with EPA method 150.1. The oil and grease analysis was done by infrared spectroscopy in accordance with EPA method 413.2. The samples were analyzed for chromium (Cr), copper (Cu), and zinc (Zn) by atomic emission spectroscopy with the use of inductively coupled argon plasma (ICAP). The lead content was determined by atomic absorption in accordance with EPA methods outlined in the 7000 series. The volatile organics analysis was done by gas chromatography/photo ionization and Hall detectors in accordance with EPA methods 8010 and 8020.

The results of these analyses are enclosed.

Sharon Hudson Bjork Technical Associate

Reviewed by

Laboratory Manager

SHB/dm

NOTE: Samples from the above project will be disposed of in 30 days from the date of this report unless we are notified otherwise.

ATI I.D. # 01-002186 #17-20 Com

VOLATILE ORGANIC ANALYSIS DATA SUMMARY EPA 8010/8020

Client:	Gregg & Associates	Date Collected: 5-1-85					
Sample I.D	.: B-1-AW-5'-40'	Date Received by Lab: 5-3-85					
Sample Mat	rix: Soil	Date Analyz	ed: 5-21-85				
ug/kg		µg/kg					
< 0.2	8enzene	< 0.4	Toluene				
< 0.04	Bromodichloromethane	< 0.03	1,1,1-Trichloroethane				
< 0.09	Bromo form	< 0.03	1,1,2-Trichloroethane				
< 0.06	Bromomethane	< 0.06	Trichloroethene				
< 0.08	- Carbon Tetrachloride	ND	Trichlorofluoromethane				
< 0.16	Chlorobenzene	< 0.05	Vinyl Chloride				
< 0.1	Chloroethane		Tilly t officer fac				
< 0.03	2-Chloroethylvinylether						
< 0.05	Chloroform	•					
< 0.02	Chloromethane						
< 0.07	- Dibromochloromethane						
< 0.4	1,2-Dichlorobenzene						
< 0.4	1,3-Dichlorobenzene						
.: 0.6	1,4-Dichlorobenzene						
ND	Dichlorodifluoromethane						
0.05	1,1-Dichloroethane						
< 0.07	1,2-Dichloroethane						
<u> </u>	1,1-Dichloroethene		(
0.09	trans-1,2-Dichloroethene						
. 0.03	1,2-Dichloropropane						
. 0.07	cis-1,3-Dichloropropene		•				
. 0.11	trans-1,3-Dichloropropend	e					
. 0.1	Ethyl Benzene						
0.02	Methylene Chloride						
. 0.03	1,1,2,2-Tetrachloroethane	2					
. 0.03	Tetrachloroethene						

INLTITUAL TECHNOLOGIES, INC.

1.0. #01-002100

REGG & ASS. ATES

QUALITY CON

DATA

ID, # 01-002:86

alysis	Date		Duplica	tes			Spil	се		EPA Quality			95%
		Sample I.D.#	lst Result	2nd Result	RPD*	Sample No.	Result	True Value	% ** Recovery	Control Solution			Confidence Interval
.1	5/20	2193 #1	16.7	16.6	1	2215 #2	0.23	0.25	92	WP 481 #2	0.17	0.17	0.15-0.19
<u>.</u> b	5/15	Comp 2186 #1-5	2.5	2.5	N/A	Comp 2186 #1-5	30	30	100	WS 378 #2			0.0223-
r	5/20	2215 #1	0.01	0.01	N/A	2215 #2	0.24	0.25	96	WP 481 #2	0.12	0.13	0.10-0.16
n	5/20	2193 #1	51.1	51.5	1	2215 #2	0.21	0.25	84	WP 481 #2	0.19	0.21	0.19-0.23
Н	5/16	2144 #1	7.59	7.55	0.5					WP 882 #1	5.74	5.70	5.58-5.82
& G	5/16	Comp. 2176 #47-52	22.1	20.2	9	2176 #47-52	862	851	101	WP 379 #1	15.5	12.0	9.6-15.8
			·			· · · · · · · · · · · · · · · · · · ·							
						·							

^{*} RPD (Relative Percent Difference) = $\frac{1st \ value - 2nd \ value}{average \ value}$

ANALYTICAL TECHNOLOGIES, INC.

I.D. #01-002186

Client: Gregg and Associates

DATA SHEET

Sample	рН	Oil & Grease	Cu	РЬ	Cr	Zn
AD18-5'						
AD18-10'						
AD18-15'		3.6	8.5	<2.5	10.9	45.9
AD18-20'						
AD1 8-30'						
AD19-5'						
AD19-10'						
AD19-15'		38.9	22.9	320	15.0	81.6
AD19-20'						
AD19-30'						
AD18-0-5'						·
AD18-5-10'	8.22		10.6	<2.5	10.1	46.5
AD18-10-18'			10.0		10.1	40.3
AD19-0-5'						
AD19-5-10'	7.98		32.6	1000	49.8	126
AD19-10-18'			32.0	1000	43.0	120
B1-AW-5'	·	18.3	6.5		10 2	26 6
B1-AW-12'		10,3	0.5		10.3	36.6
D1 AU 221						
B1-AW-22' B1-AW-40'		6.4	15.6		14.3	52.8
OT THE TO						

Corporate Offices: 225 W 30th Street National City, CA 92050 619 477-4

I.D. 01-002261

June 19, 1985

Gregg & Associates, Inc. 18351 Beach Blvd., Suite L Huntington Beach, CA 92647

Attention: Ed Baquerizo

Project: Calac #84-106-003

On May 17, 1985, Analytical Technologies, Inc. received nine (9) soil samples for analysis. The samples were analyzed for pH in accordance with EPA wet method 150.1.

The samples were sent to Analytical Technologies, Inc. in Tempe, Arizona, for analysis of volatile organic compounds. The analyses were performed by gas chromatography/Hall and photoionization detectors in accordance with EPA methods 8010 and 8020.

The results and quality control data are enclosed.

Sharon Hudson Bjork Technical Associate

Reviewed by:

Mark' King

Laboratory Manager

SHB: mat

Enclosures

NOTE: Samples from this project will be disposed of in thirty (30) days from the date of this report unless we are informed

otherwise.

ANALYTICAL TECHNOLOGIES, INC.

I.D. 01-002261

pH DATA SHEET

Client: Gregg & Associates Date Received: 5-21-85 Sample Matrix: Soil Method No.: 150.1 Date Analyzed: 5-24-85 Date Reported: 6-19-85 Units: Units

ATI SAMPLE I.D.	CLIENT SAMPLE I.D.	Нд
8505-0105	B1-Z1-10'	7.50
8505-0106	B1-Z1-18'	6.57
8505-0107	B1-Z1-26'	7.15
8505-0108	B1-Z1-34'	6.81
8505-0109	B1-Z1-44'	7.82
8505-0110	B1-Z1-60'	7.31

I.D. 01-002261		
1.U. 01-002201	7 0	01 0000061
	1.0.	U L→UUZZD1

[EPA METHOD 8010/8020]

		- 00-1,		Date S	ampled: 5-17-85
Client: Gregg	& Associates, Inc.	ATT S	amole 1	I.D.: _	8505-0105
Sample I.D.:	B1-Z1-10'		Receive		_
Sample Matrix:_	Soil	Date	Analyze	ed:	6-4-85
Units: microgra	ıms per kilogram	Date	Report	ed:	6-19-85
(u	ıg/kg)				
					
< 0.2	Benzene		<	0.4	Toluene
< 0.04	Bromodichlorometha	ine	<	0.03	1,1,1-Trichloroethane
< 0.09	Bromo form	•	<	0.03	1,1,2-Trichloroethane
< 0.06	Bromomethane	•	<	0.06	Trichloroethene
< 0.08	Carbon Tetrachlori	de	۸	≀D	Trichlorofluoromethane
< 0.16	Chlorobenzene		<	0.05	Vinyl Chloride
< 0.1	Chloroethane				
< 0.03	2-Chloroethylvinyl	ether			
< 0.05	Chloroform				
< 0.02	Chloromethane				
< 0.07	Dibromochlorometha	ne			
< 0.4	1,2-Dichlorobenzen	e			
< 0.4	1,3-Dichlorobenzen	e			
< 0.6	l,4-Dichlorobenzen	e			
ND	Dichlorodifluorome	thane			·
< 0:05	1,1-Dichloroethane				<i>7</i>
< 0.07	1,2-Dichloroethane				
< 0.07	l,1-Dichloroethene				
< 0.09	trans-1,2-Dichloro	ethene			
< 0.03	1,2-Dichloropropan	e			
< 0.07	cis-1,3-Dichloropr	opene			
< 0.11	trans-1,3-Dichloro	propen	e		
< 0.1	Ethyl Benzene				
< 0.02	Methylene Chloride				
< 0.03	1,1,2,2-Tetrachlor	oethane	<u> </u>		
< 0.03	Tetrachloroethene				•

DATA SUMMARY

[EPA METHOD 8010/8020]

	ga, w. n. zwoo o	Date Sar	mpled: 5-17-85
Client: Gregg	& Associates, Inc.	I Sample I.D.:	8505~0106
Sample I.D.:		ate Received by Lab	
Sample Matrix:	Soil Da	ate Analyzed:	6-4-85
Units: microgra	ams per kilogram Da	ite Reported:	6-19-85
(1	ug/kg)		
	·	·	
< 0.2	Benzene	< 0.4	To luene
< 0.04	Bromodichloromethane	< 0.03	1,1,1-Trichloroethane
< 0.09	Bromoform	< 0.03	1,1,2-Trichloroethane
< 0.06	Bromomethane	< 0.06	Trichloroethene
< 0.08	Carbon Tetrachloride	ND	Trichlorofluoromethane
< 0.16	Chlorobenzene	< 0.05	Vinyl Chloride
< 0.1	Chloroethane		•
< 0.03	2-Chloroethylvinyleth	ier	
< 0.05	Chloroform		
< 0.02	Chloromethane		
< 0.07	Dibromochloromethane		
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluorometha	ne	
< 0:05	1,1-Dichloroethane		· ·
< 0.07	1,2-Dichloroethane		
< 0.07	1,1-Dichloroethene		
<u>< 0.09</u>	trans-1,2-Dichloroeth	ene	
< 0.03	1,2-Dichloropropane		,
< 0.07	cis-1,3-Dichloroprope	ne	
< 0.11	trans-1,3-Dichloropro	pene	
< 0.1	Ethyl Benzene		
< 0.02	Methylene Chloride		
< 0.03	1,1,2,2-Tetrachloroeti	hane	
ስ ለጎ			

Tetrach loroethene

< 0.03

Tetrachloroethene

VOLATILE ORGANIC ANALYSIS

DATA SUMMARY

	LENA WETHOU S		mpled: 5-17-85
Client: Gregg	& Associates, Inc.	ATI Sample I.D.:	0505 0107
Sample I.D.:	<u> </u>	Nate Received by La	
Sample Matrix:		Date Analyzed:	
•		Date Reported:	
	ug/kg)		
	_		<u>-</u> . •
< 0.2	Benzene	< 0.4	Toluene
< 0.04	- Bromodichloromethane	< 0.03	
< 0.09	Bromoform	< 0.03	1,1,2-Trichloroethane
< 0.06	- Bromomethane	< 0.06	Trichloroethene
< 0.08	- Carbon Tetrachloride	e NO	Trichlorofluoromethan
< 0.16	- Chlorobenzene	< 0.05	Vinyl Chloride
< 0.1	Chloroethane		-
< 0.03	2-Chloroethylvinylet	her	
< 0.05	Chloroform		
< 0.02	_ Chloromethane		
< 0.07	Dibromochloromethane	1	
< 0.4	1,2-Dichlorobenzene		
< 0.4	1,3-Dichlorobenzene		
< 0.6	1,4-Dichlorobenzene		
ND	Dichlorodifluorometh	nane	
< 0:05	1,1-Dichloroethane		· · · · · · · · · · · · · · · · · · ·
< 0.07	1,2-Dichloroethane		•
< 0.07	1,1-Dichloroethene		
× 0.09	_ trans-1,2-Dichloroet	thene	
< 0.03	1,2-Dichloropropane		•
< 0.07	cis-1,3-Dichloroprop	ene	
< 0.11	_ trans-1,3-Dichloropr	ropene	
< 0.1	_ Ethyl Benzene		
< 0.02	_ Methylene Chloride		
< 0.03	1,1,2,2-Tetrachloroe	thane	
	-	thane	•

DATA SUMMARY

	•			Date Sar	mpled: 5-17-85
Client: Gregg	& Associates, Inc.	ATI Sa	mp1e	I.D.:	8505-0108
Sample I.D.:	B1-Z1-34'			ed by Lat	
Sample Matrix:	Soil	Date A	lna i yz	ed:	6-4-85
Units: microgr	rams per kilogram	Date F	Report	.ed:	6-19-85
	(ug/kg)				
	<u>_</u> .	_			<u>-</u>
< 0.2	Benzene		<	0.4	Toluene
< 0.04	- Bromodichlorometh	ane _	<	0.03	1,1,1-Trichloroethane
< 0.09	Bromoform	_	<	0.03	1,1,2-Trichloroethane
< 0.06	— Bromomethane	_	<	0.06	Trichloroethene
< 0.08	— Carbon Tetrachlor	i de		ND	- Trichlorofluoromethar
< 0.16	Chlorobenzene	_	<	0.05	- Vinyl Chloride
< 0.1	— Chloroethane	_			-
< 0.03	- 2-Chloroethylviny	lether			
< 0.05	Chloroform	•			
< 0.02	Chloromethane				
< 0.07	Dibromochlorometh	ane			
< 0.4	1,2-Dichlorobenze	ne			
< 0.4	1,3-Dichlorobenze	ne			
< 0.6	1,4-Dichlorobenze				
NO	Dichlorodifluorom	ethane			
< 0:05		e			·*
< 0.07	_ 1,2-Dichloroethan	e			•
< 0.07	l,l-Dichloroethen	e			
< 0.09	trans-1,2-Dichlor	oethene			
< 0.03	1,2-Dichloropropa	ne			
< 0.07	cis-1,3-Dichlorop	ropene			
< 0.11	trans-1,3-Dichlor	opropene	<u> </u>		
< 0.1	_ Ethyl Benzene				
< 0.02	Methylene Chlorid	e			
< 0.03	1,1,2,2-Tetrachlo	roethane	?		
< 0.03	Tetrachloroethene				

I.D. 01-002261

VOLATILE ORGANIC ANALYSIS

DATA SUMMARY

[EPA METHOD 8010/8020]

		- , ,	Da	te Samp	led: 5-	17-85
Client: Gregg	& Associates, Inc.	ATT S	ample I.	D.:	8505-010)9
Sample I.D.:	B1-Z1-44'		Received			-85
Sample Matrix:	Soil	Date	Analyzed	;	6-4-85	
Units: microgra	ams per kilogram	Date	Reported	:	6-19-85	;
(1	ug/kg)					
	_					·
< 0.2	Benzene		< C	1.4	Toluene	
< 0.04	Bromodichlorometha	ane	< C	.03	1,1,1-1	richloroethane
< 0.09	Bromoform		< 0	.03	1,1,2-T	richloroethane
< 0.06	Bromomethane		< 0	.06	Trichlo	roethene
< 0.08	Carbon Tetrachlori	ide	סא		Trichlo	rofluoromethane
< 0.16	Chlorobenzene		< 0	.05	Vinyl C	hloride
< 0.1	Chloroethane					
< 0.03	2-Chloroethylvinyl	ether				
< 0.05	Chloroform					
< 0.02	Chloromethane	•				
< 0.07	Dibromochlorometha	ine				·
< 0.4	1,2-Dichlorobenzen	ie				
< 0.4	1,3-Dichlorobenzen	ie				
< 0.6	1,4-Dichlorobenzen	e				
ND	Dichlorodi fluorome	thane				
< 0.05	1,1-Dichloroethane					
< 0.07	1,2-Dichloroethane					
< 0.07	1,1-Dichloroethene					
·< 0.09	trans-1,2-Dichloro	ethene				
< 0.03	1,2-Dichloropropan	e				
< 0.07	cis-1,3-Dichloropr	opene				
< 0.11	trans-1,3-Dichloro	propene	2			
< 0.1	Ethyl Benzene					
< 0.02	Methylene Chloride					
< 0.03	1,1,2,2-Tetrachlor	oethane	2			
< 0.03	Tetrachloroethene					

ת ז	01-002261
1.0.	VI VOLLUI

DATA SUMMARY

			D	ate Samp	led: 5-17-85
Client: Gregg	& Associates, Inc.	ATI Sa	mple	I.D.:	8505-0110
Sample I.D.:	B1-Z1-60'	Date R	eceiv	ed by Lat	5-21-85
Sample Matrix:	Soil	Date A	nalyz	ed:	6-4-85
	ams per kilogram	Date R	eport	ed:	6-19-85
(!	ug/kg)				
	_			**************************************	-
< 0.2	Benzene		<	0.4	Toluene
< 0.04	- Bromodichlorometha	ane –	<	0.03	1,1,1-Trichloroethane
< 0.09	- Bromoform	~	<	0.03	1,1,2-Trichloroethane
< 0.06	Bromomethane		<	0.06	Trichloroethene
< 0.08	- Carbon Tetrachlor	i de		ИО	- Trichlorofluoromethar
< 0.16	- Chlorobenzene	_	<	0.05	- Vinyl Chloride
< 0.1	- Chloroethane				•
< 0.03	- 2-Chloroethylviny	lether	•		
< 0.05	- Chloroform				
< 0.02	- Chloromethane				
< 0.07	Dibromoch loromethane				
< 0.4	1,2-Dichlorobenzene				
< 0.4	1,3-Dichlorobenzene				
< 0.6	1,4-Dichlorobenzene				
ND	- Dichlorodifluorom				
< 0.05	- 1,1-Dichloroethan	e			··
< 0.07	1,2-Dichloroethane				
< 0.07	1,1-Dichloroethene				
< 0.09	trans-1,2-Dichlor	oethene			
< 0.03	1,2-Dichloropropa	ne			
< 0.07	cis-1,3-Dichlorop	ropene			
< 0.11	trans-1,3-Dichlor	propene			
< 0.1	Ethyl Benzene				
< 0.02	Methylene Chloride				
< 0.03	1,1,2,2-Tetrachlo	roethane			
< 0.03	Tetrachloroethene				

I.D. 01-002261

DATA SUMMARY

				Date San	npled: 5-17-85
Client: Gregg	& Associates, Inc.	ATI Sa	mple	I.D.:	8505-0111
Sample I.D.:	A-1-F-8'			ed by Lab	
Sample Matrix:	Soil	Date A	lna I y z	ed:	6-4-85
Units: microgr	ams per kilogram	Date F	Report	.ed:	6-19-85
	ug/kg)				
	_	_		· 	•
< 0.2	Benzene		<	0.4	Toluene
< 0.04	Bromodichlorometh	ane		0.03	l,1,1-Trichloroethane
< 0.09	_ Bromo form			0.03	1,1,2-Trichloroethane
< 0.06	_ Bromomethane	-	 -	0.06	Trichloroethene
< 0.08	_ Carbon Tetrachlor	ide -		ND	. Trichlorofluoromethar
< 0.16	_ Chlorobenzene			0.05	Vinyl Chloride
< 0.10	Chloroethane	_	<u> </u>		. Tring i om torrac
< 0.03	2-Chloroethylviny	lether			
< 0.05	Chloroform	· cciici			
< 0.02	_ Chloromethane				
< 0.07	Dibromochloromethane				
< 0.4	-				
< 0.4	1,2-Dichlorobenzene 1,3-Dichlorobenzene				
< 0.6	1,4-Dichlorobenzene				
ND	Dichlorodi fluorom				
< 0.05	1,1-Dichloroethane				
< 0.07	1,2-Dichloroethane				
< 0.07	1,1-Dichloroethen				
< 0.09	trans-1,2-Dichlore				
< 0.03	1,2-Dichloropropa				
< 0.07	cis-1,3-Dichlorop				
< 0.11	trans-1,3-Dichlor	· ·	2		
< 0.1	Ethyl Benzene	, , ,			
< 0.02	Methylene Chloride	e			
< 0.03	1,1,2,2-Tetrachlo		2		
0.03	# 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.			

1 0	01-002261	
1.0.	01-005501	

DATA SUMMARY

	ELIX HEIMOD	•	Date Samp	led: 5-17-85
Client: Gregg	& Associates, Inc.	NTI Sample	I.D.:	8505-0112
Sample I.D.:		Date Receiv		: 5-21-85
Sample Matrix:	Soil	Date Analyz	ed:	6-4-85
Units: microgra	ıms per kilogram [Date Report	.ed:	6-19-85
((ıg/kg)			
				•
< 0.2	Benzene	<	0.4	Toluene
< 0.04	Bromodichloromethane	<	0.03	1,1,1-Trichloroethane
< 0.09	Bromo form	<	0.03	1,1,2-Trichloroethane
< 0.06	Bromomethane	<	0.06	Trichloroethene
< 0.08	Carbon Tetrachloride		ND	Trichlorofluoromethane
< 0.16	Chlorobenzene	<	0.05	Vinyl Chloride
< 0.1	Chloroethane			
< 0.03	2-Chloroethylvinylet	her		
< 0.05	Chloroform			•
< 0.02	Chloromethane	•		
< 0.07	Dibromochloromethane			
< 0.4	1,2-Dichlorobenzene			
< 0.4	1,3-Dichlorobenzene			
< 0.6	1,4-Dichlorobenzene			
ַDM	Dichlorodifluorometh	ane		
< 0:05	1,1-Dichloroethane			· ·
< 0.07	1,2-Dichloroethane			•
< 0.07	1,1-Dichloroethene			
·< 0.09	trans-1,2-Dichloroet	hene		•
< 0.03	1,2-Dichloropropane			
< 0.07	cis-1,3-Dichloroprope	ene		
< 0.11	trans-1,3-Dichloropro	pene		
< 0.1	Ethyl Benzene			
< 0.02	Methylene Chloride			
< 0.03	1,1,2,2-Tetrachloroet	hane	•	
< 0.03	Tetrachloroethene			

I.D. 01-002261

VOLATILE ORGANIC ANALYSIS

DATA SUMMARY

LEPA METHOD	8010/80201	Date Sami	oled: 5-17-85
Associates, Inc.	Afame2 ITA		8505-0113
	•		
	Date Analyz	ed:	6-4-85
ms per kilogram	Date Report	ed:	6-19-85
g/kg)	·		
Benzene	<	0.4	Toluene
•	e <	0.03	1,1,1-Trichloroethane
		0.03	1,1,2-Trichloroethane
	<	0.06	Trichloroethene
	e	ND	Trichlorofluoromethan
		0.05	Vinyl Chloride
Chloroethane			
2-Chloroethylvinylether			
Chloroform			
Chloromethane			
Dibromochloromethane			
1,2-Dichlorobenzene			
1,3-Dichlorobenzene			
1,4-Dichlorobenzene			
Dichlorodi fluoromethane			
1,1-Dichloroethane			
1,2-Dichloroethane			
1,1-Dichloroethene			
trans-1,2-Dichloroe	thene		
1,2-Dichloropropane			
cis-1,3-Dichloropro	pene		
trans-1,3-Dichlorop	ropene		
Ethyl Benzene			
Methylene Chloride			
1,1,2,2-Tetrachloroethane			
Tetrachloroethene			
	Associates, Inc. -1-F-24' Soil ms per kilogram g/kg) Benzene Bromodichloromethan Bromoform Bromomethane Carbon Tetrachlorid Chlorobenzene Chloroethane 2-Chloroethylvinyle Chloroform Chloromethane Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane cis-1,3-Dichloropro trans-1,3-Dichloropro Ethyl Benzene Methylene Chloride 1,1,2,2-Tetrachloro	Soil Date Received Soil Date Analyzed Date Report Soll Da	Associates, Inc. -1-F-24' Date Received by Lab: Soil Date Analyzed: ms per kilogram Date Reported: g/kg) Benzene

Energy & Environmental Division

Gregg & Associates 18351 Beach Blvd. Ste. "L" Huntington Beach, CA 92647

May 15, 1985 Acurex ID#: 8505-017 Client PO#: 84-106-003

Page 1 of 2

Attention: Ed Baquerizo

Subject:

GC/MS Analysis of One Water Sample from Job #84-106-003

for Volatile Organics, Received 5/10/85

One water sample was analyzed for volatile organics according to U.S. EPA Method 624 (Federal Register, Dec. 3, 1979; Page 69532). Results are presented in Table 1. The method can be summarized as follows:

Helium is bubbled through a 5-mL water sample contained in a specially designed purging chamber at ambient temperature. The purgeable volatile organic compounds are efficiently transferred from the aqueous phase to the vapor phase. The vapor is swept through a sorbent column where the purgeables are trapped. After purging is completed, the sorbent column is heated and back flushed with helium to desorb the purgeables onto a gas chromatographic column. The gas chromatograph is temperature programmed to separate the purgeables which are then detected with a mass spectrometer.

Compounds other than the priority pollutants are identified with the aid of a NBS-EPA library search.

Prior to analysis every sample is spiked with surrogate compounds as part of Acurex's Quality Control Program. These compounds simulate the behavior of compounds of interest and confirm that acceptable recoveries are being achieved on every sample. The results of surrogate recoveries are reported with the sample results.

If you should have any questions, please do not hesitate to call.

Prepared by: Richard F Word Approved by: Wishard Scott

Staff Chemist

Richard Scott

Manager, GC/MS Operations

RPW/RS/ats

These results were obtained by following standard laboratory procedures; the liability of Acurex Corporation shall not exceed the amount paid for this report. In no event shall Acurex be liable for special or consequential damages.

Gregg & Associates 8505-017 Page 2 of 2

Table 1. Volatile Organics Results

Gregg & Associates Sample ID

B-1-Z1 Composite*

Priority Pollutants	Concentration (µg/L)				
Methylene Chloride Trichloroethene Toluene All Other Priority Pollutants	160 5 3 ND				
Nonpriority Pollutants					
Acetone	480				
Detection Limit	1				
Surrogate Recoveries	Percent (%)				
l,2-Dichloroethane-d4 Toluene-d8 p-Bromofluorobenzene	97 109 97				

ND - Not Detected

Note: The septa on the sample vials were upside down.

^{*} Sample composited from three vials

Energy & Environmental Division

Gregg and Associates 18351 Beach Blvd. Huntington Beach, CA 92647 June 21, 1985 Acurex ID#: 8506-024 Client PO#:85-106-008

Page 1 of 2

Attention: Ed Baquerizo

Subject:

GC/MS Analysis of Eight Soil Samples for Volatile Organics, Received 6/13/85

Eight soil samples were analyzed for volatile organics according to U.S. EPA Method 8240. Results are presented in Table 1. The method can be summarized as follows:

Helium is bubbled through a 5 g soil sample dispersed in 10 mL of reagent grade water contained in a specially designed purging chamber at ambient temperature. The purgeable volatile organic compounds are efficiently transferred from the aqueous phase to the vapor phase. The vapor is swept through a sorbent column where the purgeables are trapped. After purging is completed, the sorbent column is heated and back flushed with helium to desorb the purgeables onto a gas chromatographic column. The gas chromatograph is temperature programmed to separate the purgeables which are then detected with a mass spectrometer.

Compounds other than the priority pollutants are identified with the aid of a NBS-EPA library search.

Prior to analysis every sample is spiked with surrogate compounds as part of Acurex's Quality Control Program. These compounds simulate the behavior of compounds of interest and confirm that acceptable recoveries are being achieved on every sample. The results of surrogate recoveries are reported with the sample results.

If you should have any questions, please do not hesitate to call.

Prepared by:

Richard P. Wood

Staff Chemist

Approved by: Cechara

Richard Scott

Manager, GC/MS Operations

RPW/RS/kek

These results were obtained by following standard laboratory procedures; the liability of Acurex Corporation shall not exceed the amount paid for this report. In no event shall Acurex be liable for special or consequential damages.

ND - Not Detected